[vios1023]维多利亚的舞会3<强联通分量tarjan>
题目链接:https://vijos.org/p/1023
最近在练强联通分量,当然学的是tarjan算法
而这一道题虽然打着难度为3,且是tarjan算法的裸题出没在vijos里面
但其实并不是纯粹只需要tarjan求有几个强联通就可以过的(我以为这是所谓的裸题)
其实这题还需要对每一个强联通缩点,可能被所谓裸题误导的OIer们看不破这个
毕竟,这个样例数据也是坑啊,样例数据都可以说是无向图了,哪里还是什么有向图
所以样例数据不是万能的,但是没过样例数据是万万不能的
至于为什么缩点我们来想一想,这张图中,怎么才满足可以被通知到
是在一个强联通分量里面?还是有一条边相连?还是有别的人指向他?
当然可以想到是有人指向他,这样就可以排除求出强联通分量个数的方法。。
不过我们可以确认的是,在一个强联通分量的点,只需要一个点就可以把这个强联通分量通知完,然后我们就可以判断任意两个强联通分量有没有可能有联系,也就是刚刚提到的有没有指向这个强联通分量的其他分量,也就是有没有入度。如果有入度,我们就可以把这个强联通分量与另一个合并,也就是这两个分量只要一个人就可以通知完。由于在这里理解成强联通分量会有些麻烦,所以就是所谓的缩点,把这个强联通分量看成一个点再来找边和入度
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<algorithm>
#include<cstdlib>
#define maxn 205
using namespace std; struct node{
int u,v,w,nxt;
}e[maxn*maxn]; int head[maxn],dfn[maxn],low[maxn],belong[maxn];
int num,tot,n,m,k,ans,in[maxn],cnt;
stack<int >s; void adde(int u,int v){
e[++tot].u=u;
e[tot].v=v;
e[tot].nxt=head[u];
head[u]=tot;
} void tarjan(int u){
num++;
dfn[u]=low[u]=num;
s.push(u);
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].v;
if(dfn[v]==){
tarjan(v);
low[u]=min(low[u],low[v]);
}else{
if(!belong[v])low[u]=min(low[u],dfn[v]);
}
}
if(dfn[u]==low[u]){
ans++;
belong[u]=ans;
while(s.top()!=u){
belong[s.top()]=ans;
s.pop();
}s.pop();
}
} int main(){
memset(head,-,sizeof(head));
scanf("%d",&n);
for(int i=;i<=n;i++){
int a;scanf("%d",&a);
while(a!=){
adde(i,a);scanf("%d",&a);}
}
for(int i=;i<=n;i++){
if(dfn[i]==)tarjan(i);
}
for(int i=;i<=tot;i++){
int u=e[i].u,v=e[i].v;
if(belong[u]!=belong[v]){
in[belong[v]]++;
}
}
for(int i=;i<=ans;i++){
if(!in[i])cnt++;
}
printf("%d",cnt);
}
【总结】
样例数据是万能的,不能过于相信样例,但是样例错了那就肯定错了
(另外,之前看见有人说原本想并查集但是错了,我个人没有想通为何不能简单的用并查集来偷懒,希望大佬能指点我一番)
[vios1023]维多利亚的舞会3<强联通分量tarjan>的更多相关文章
- 强联通分量-tarjan算法
定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强 ...
- POJ 3592 Instantaneous Transference(强联通分量 Tarjan)
http://poj.org/problem?id=3592 题意 :给你一个n*m的矩阵,每个位置上都有一个字符,如果是数字代表这个地方有该数量的金矿,如果是*代表这个地方有传送带并且没有金矿,可以 ...
- POJ 3114 Countries in War(强联通分量+Tarjan)
题目链接 题意 : 给你两个城市让你求最短距离,如果两个城市位于同一强连通分量中那距离为0. 思路 :强连通分量缩点之后,求最短路.以前写过,总感觉记忆不深,这次自己敲完再写了一遍. #include ...
- 有向图的强联通分量 Tarjan算法模板
//白书 321页 #include<iostream> #include<cstdio> #include<cstring> #include<vector ...
- hdu 1269 (强联通分量Tarjan入门)
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- Tarjan求强联通分量+缩点
提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarj ...
- 【POJ 1236 Network of Schools】强联通分量问题 Tarjan算法,缩点
题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u ...
- 【强联通分量缩点】【Tarjan】bzoj1051 [HAOI2006]受欢迎的牛
就是看是否有一些点,从其他任何点出发都可到达 定理:有向无环图中唯一出度为0的点,一定可以由任何点出发均可达. 所以缩点,若出度为零的点(强联通分量)唯一,则答案为该强联通分量中点的度数. 若不唯一, ...
- 强联通分量(tarjan算法+算法简介)
题目描述 对于一个有向图顶点的子集S,如果在S内任取两个顶点u和v,都能找到一条从u到v的路径,那么就称S是强连通的.如果在强连通的顶点集合S中加入其他任意顶点集合后,它都不再是强连通的,那么就称S ...
随机推荐
- 后端工程师必知必会的前端 css 知识
后端工程师虽然大部分工作都是跟服务器缓存数据库打交道,但有时也需要写一些前端代码. 有些公司的OAM后台基本是由后端工程师承包的,所以前端基础知识是必须要掌握的:就算开发中不直接写前段代码,了解前端知 ...
- Vmware安装的linux系统开机黑屏,关闭显示虚拟机忙怎么怎么解决?
在vm虚拟机中,可能会遇到打开一台主机直接黑屏,而且无法关闭,关闭会显示虚拟机繁忙这种情况,如下图: 一般是因为没有正常关机或者操作不当导致的 对此,解决办法一般有两种 第一种方法: 1.重启电脑 ...
- LeetCode 33,在不满足二分的数组内使用二分的方法
本文始发于个人公众号:TechFlow,原创不易,求个关注 链接 Search in Rotated Sorted Array 难度 Medium 描述 给定一个升序排列的数组,它被分成两部分之后交换 ...
- vijos 1011 清帝之惑之顺治
背景 顺治帝福临,是清朝入关后的第一位皇帝.他是皇太极的第九子,生于崇德三年(1638)崇德八年八月二ten+six日在沈阳即位,改元顺治,在位18年.卒于顺治十八年(1661),终24岁. 顺治即位 ...
- xcode制作越狱包
1.将运行目标选为iOS Device 2.Edit Scheme -> 选择 Run [App Name] -> Build Configuration下拉框中选择Release 3.生 ...
- Core + Vue 后台管理基础框架3——后端授权
1.前言 但凡业务系统,授权是绕不开的一环.见过太多只在前端做菜单及按钮显隐控制,但后端裸奔的,觉着前端看不到,系统就安全,掩耳盗铃也好,自欺欺人也罢,这里不做评论.在.NET CORE中,也见过不少 ...
- Oracle 11g rac开启归档
Oracle 11g rac开启归档 查看目前归档状态 #节点1 ykws1 SQL> archive log list; Database log mode No Archive Mode A ...
- java.lang.reflect.UndeclaredThrowableException: null Caused by: org.apache.zookeeper.KeeperException$UnimplementedException: KeeperErrorCode = Unimplemented for
java.lang.reflect.UndeclaredThrowableException: null at org.springframework.util.ReflectionUtils. ...
- net core天马行空系列:移植Feign,结合Polly,实现回退,熔断,重试,超时,做最好用的声明式http服务调用端
系列目录 1.net core天马行空系列:原生DI+AOP实现spring boot注解式编程 2.net core天马行空系列: 泛型仓储和声明式事物实现最优雅的crud操作 3.net core ...
- 关于emgucv控制多摄像头问题
看到这篇文章你或许已经查阅很多资料,也可能你刚准备深入研究,但是关于调用多摄像头问题我要说明一点,关于多摄像头调用 取决于你电脑本身USB控制器数量,不是说你电脑上5个usb就可以同时控制5台摄像头, ...