原题链接

一看我感觉是个什么很难的式子……

结果读完了才发现本质太简单。

算法一

完全按照那个题目所说的,真的把质因数分解的结果保留。

最后乘。

时间复杂度:\(O(r \sqrt{r})\).

实际得分:\(40pts\).

(实在想不到比这得分更低的算法了)

算法二

机智的发现是个因数枚举。

然后枚举因数。

时间复杂度: \(O(r \sqrt{r})\).

实际得分: \(40pts\).

(只是码量少一点)

算法三

推式子。

\(f_x\) 其实就是 \(x\) 的因数个数。

我们只需分别求出 \(\sum_{i=1}^r f_i\) 和 \(\sum_{i=1}^{l-1} f_i\) ,再相减即可。

(日常前缀和思路)

\[\sum_{i=1}^r f_i
\]

\[= \sum_{i=1}^r \sum_{j|i} 1
\]

\[= \sum_{i=1}^r \sum_{j=1}^i [j|i]
\]

\[= \sum_{j=1}^r \sum_{i=1}^r [j|i]
\]

(这步的依据是:我们不枚举每个数的因数,而是考虑每个数作为其它因数所产生的贡献)

\[= \sum_{j=1}^r \lfloor \frac{r}{j} \rfloor
\]

(这步的依据是:从 \(1\) 到 \(n\) 共有 \(\lfloor \frac{r}{j} \rfloor\) 个数是 \(j\) 的倍数)

然后到这里,我们暴力枚举。

时间复杂度: \(O(r)\).

实际得分:\(60pts\).

算法四

暴力枚举个头?

答案摆在面前还在那暴力

明明是整除分块好吧。

不知道整除分块是啥?

浅谈整除分块

\(\texttt{OK}\),你发现,这题竟然是 整除分块的模板题

时间复杂度: \(O(\sqrt{r})\).

实际得分:\(100pts\).

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll MOD=998244353; inline ll read(){char ch=getchar();ll f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
ll x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;} int main(){
ll l=read(),r=read();
ll ans=0; l--;
for(ll i=1,t;i<=r;i=t+1) {
t=r/(r/i); ll len=(t-i+1)%MOD;
ans=(ans+len*(r/i)%MOD)%MOD;
} //这是 1~r 的
for(ll i=1,t;i<=l;i=t+1) {
t=l/(l/i); ll len=(t-i+1)%MOD;
ans=(ans-len*(l/i)%MOD+MOD)%MOD; //这是 1~(l-1) 的
//为了防止模出负数,我们加上 MOD 再模
} printf("%lld\n",(ans+MOD)%MOD);
return 0;
}

洛谷 P3935 Calculating 题解的更多相关文章

  1. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  2. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

  3. [洛谷P3935]Calculating

    题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...

  4. 洛谷 - P3935 - Calculating - 整除分块

    https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...

  5. 洛谷 P3935 Calculating

    虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...

  6. 洛谷NOIp热身赛题解

    洛谷NOIp热身赛题解 A 最大差值 简单树状数组,维护区间和.区间平方和,方差按照给的公式算就行了 #include<bits/stdc++.h> #define il inline # ...

  7. 洛谷P2827 蚯蚓 题解

    洛谷P2827 蚯蚓 题解 题目描述 本题中,我们将用符号 ⌊c⌋ 表示对 c 向下取整. 蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓. 蛐蛐国里现 ...

  8. 洛谷P1816 忠诚 题解

    洛谷P1816 忠诚 题解 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意.但是由于一些人 ...

  9. [POI 2008&洛谷P3467]PLA-Postering 题解(单调栈)

    [POI 2008&洛谷P3467]PLA-Postering Description Byteburg市东边的建筑都是以旧结构形式建造的:建筑互相紧挨着,之间没有空间.它们共同形成了一条长长 ...

随机推荐

  1. # Django 2.2.*问题记录

    使用pymysql作为Django连接MySQL数据库的工具时,碰到以下问题,留下记录以便后期遇到相同问题时查看. 问题1 django.core.exceptions.ImproperlyConfi ...

  2. ubuntu16.04安装mysql5.6

    apt-get install software-properties-commonsudo add-apt-repository 'deb http://archive.ubuntu.com/ubu ...

  3. 添砖加瓦:Linux /proc目录简介

    Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构.改变内核设置的机制.proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间.它以文件系统的方式为访问系 ...

  4. 人工智能VS投资者:股票市场上谁的胜算更高?

    人工智能研究历史渊源,当人工智能与资本投资,尤其是股票投资相结合或许听起来有些异想天开,但正如科幻作家William Gibson所言:"未来已经到来,只是分布不均." 在股票市场 ...

  5. swoole(3)网络服务模型(单进程阻塞、预派生子进程、单进程阻塞复用模型)

    一:单进程阻塞 设计流程: 创建一个socket,绑定端口bind,监听端口listen 进入while循环,阻塞在accept操作上,等待客户端连接进入,进入睡眠状态,直到有新的客户发起connet ...

  6. Java基础--Java基本数据类型

    一.基本数据类型(primitive type) (1)数值型 1.数值型包括整数类型(byte,short,int,long) a.byte :1字节=8bit位   (-128~127) 包装类: ...

  7. LaTex公式符号

    下面这个网站是我认为比较齐全的网站 http://www.mohu.org/info/symbols/symbols.htm

  8. 最适合初学者的一篇 Ribbon 教程

    什么是 Ribbon Ribbon 是一个基于 HTTP 和 TCP 的 客服端负载均衡工具,它是基于 Netflix Ribbon 实现的. 它不像 Spring Cloud 服务注册中心.配置中心 ...

  9. EF多租户实例:如何快速实现和同时支持多个DbContext

    前言 上一篇随笔我们谈到了多租户模式,通过多租户模式的演化的例子.大致归纳和总结了几种模式的表现形式. 并且顺带提到了读写分离. 通过好几次的代码调整,使得这个库更加通用.今天我们聊聊怎么通过该类库快 ...

  10. windows上用putty从linux上下载文件

    我之前使用putty都是直接从网上下的putty.exe,其实如果想下载windows的mis二进制文件,系统安装的话会包含,pscp.psftp.puttygen等一系列的文件. 今天下从服务器上, ...