通过CGAL将一个多边形剖分成Delaunay三角网
1. 概述
对于平面上的点集,通过Delaunay三角剖分算法能够构建一个具有空圆特性和最大化最小角特性的三角网。空圆特性其实就是对于两个共边的三角形,任意一个三角形的外接圆中都不能包含有另一个三角形的顶点,这种形式的剖分产生的最小角最大。
更进一步的,可以给Delaunay三角网加入一些线段的约束条件,使得构建的Delaunay三角网能够利用这些线段。利用这个特性,可以将一个多边形剖分成Delaunay三角网,开源工具CGAL就正好提供了这个功能。
2. 实现
因为要显示三角网的效果,所以我在《使用QT绘制一个多边形》这篇博文提供的QT界面上进行修改,正好这篇文章提供的代码还实现了在QT中绘制多边形的功能。
关于网格化以及三角网剖分,在CGAL中提供了非常详尽繁复的解决方案,我这里选择了CGAL::refine_Delaunay_mesh_2这个接口,这个接口能够将多边形区域构建成一个Delaunay三角网,如果当前的存在三角形不满足Delaunay,就会在其中补充一些点来满足Delaunay的相关特性。主要的实现代码如下(具体代码见文章最后):
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Delaunay_mesher_2.h>
#include <CGAL/Delaunay_mesh_face_base_2.h>
#include <CGAL/Delaunay_mesh_size_criteria_2.h>
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Delaunay_mesh_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb, Fb> Tds;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, Tds> CDT;
typedef CGAL::Delaunay_mesh_size_criteria_2<CDT> Criteria;
typedef CDT::Vertex_handle Vertex_handle;
typedef CDT::Point Point;
//三角化
void GraphicsPainter::Triangulate()
{
//找到边界上所有的像素点
vector<Vector2d> ROIBoundPointList;
CalBoundPoint(ROIBoundPointList);
CDT cdt;
vector<Vertex_handle> vertexList;
cout<<ROIBoundPointList.size()<<endl;
// for(int i = 0; i<pointList.size(); i++)
// {
// vertexList.push_back(cdt.insert(Point(pointList[i].x(), pointList[i].y() )));
// }
for(int i = 0; i<ROIBoundPointList.size(); i++)
{
vertexList.push_back(cdt.insert(Point(ROIBoundPointList[i].x, ROIBoundPointList[i].y )));
}
for(unsigned int i =0;i<vertexList.size()-1;i++)
{
cdt.insert_constraint(vertexList[i],vertexList[i+1]);
}
//cdt.insert_constraint(vertexList[vertexList.size()-1],vertexList[0]);
std::cout << "Number of vertices: " << cdt.number_of_vertices() <<std::endl;
std::cout << "Meshing the triangulation..." << std::endl;
CGAL::refine_Delaunay_mesh_2(cdt, Criteria());
std::cout << "Number of vertices: " << cdt.number_of_vertices() <<std::endl;
CDT::Face_iterator fit;
for (fit = cdt.faces_begin(); fit!= cdt.faces_end(); ++fit)
{
QVector<QPointF> triPoint;
triPoint.push_back(QPointF(fit->vertex(0)->point().x(), fit->vertex(0)->point().y()));
triPoint.push_back(QPointF(fit->vertex(1)->point().x(), fit->vertex(1)->point().y()));
triPoint.push_back(QPointF(fit->vertex(2)->point().x(), fit->vertex(2)->point().y()));
QPolygonF tri(triPoint);
triList.push_back(tri);
}
bTri = true;
update();
}
3. 结果
在QT界面上绘制一个多边形,只用多边形上的点,最后的三角网格效果:

通过这篇博文《矢量线的一种栅格化算法》提供的栅格化算法,可以将一个多边形栅格化,这样就可以得到一个栅格多边形,通过这个算法网格化,最后的效果:

可以发现这种方式会在内部新添加一些点,来满足Delaunay特性。并且会形成边界密集,中间稀疏的网格效果。在一些图形、图像处理中,会用到这种自适应网格(Adaptive Mesh)。
4. 参考
通过CGAL将一个多边形剖分成Delaunay三角网的更多相关文章
- 基于CGAL的Delaunay三角网应用
目录 1. 背景 1.1 CGAL 1.2 cgal-bindings(Python包) 1.3 vtk-python 1.4 PyQt5 2. 功能设计 2.1 基本目标 2.2 待实现目标 3. ...
- css笔记:如何将一个页面平均分成四个部分?
今天,我在刷面试题的时候,突然想到一道题:如何将一个页面平均分成四个部分(div)呢?其实难度也不大,于是直接上代码 <!DOCTYPE html> <html lang=" ...
- 将一个整数M分成N个整数 要求每个都在区间【minV, maxV】之间
将一个整数M分成N个整数 要求每个都在区间[minV, maxV]之间,怎么分比较快捷???? 说明: N是>=1且<=9的数,分割的数据只要符合[minV, maxV]区间即可,可以是等 ...
- C++ 基于凸包的Delaunay三角网生成算法
Delaunay三角网,写了用半天,调试BUG用了2天……醉了. 基本思路比较简单,但效率并不是很快. 1. 先生成一个凸包: 2. 只考虑凸包上的点,将凸包环切,生成一个三角网,暂时不考虑Delau ...
- CSS 将一个页面平均分成四个部分(div)
在项目中遇到需求,数据监控页面需要同时显示4个板块内容,如下图: CSS 如何将一个页面平均分成四个部分(div)呢? <!DOCTYPE html> <html lang=&quo ...
- 将一个list均分成n个list
/** * 将一个list均分成n个list,主要通过偏移量来实现的 * @param source * @return */ public <T> List<List<T&g ...
- OSG :三维无序离散点构建Delaunay三角网
利用OSG的osgUtil库里面的DelaunayTriangulator类. points是需要构建三角网的点 osgUtil::DelaunayTriangulator* trig = new o ...
- 将一个压缩文件分成多个压缩文件;RAR文件分卷
有时候需要上传压缩文件,但是限制了单个文件的大小,那我们怎么才能将一个比较大的压缩文件分割成多个压缩文件,从而符合要求的进行文件的上传呢?这里小编告诉你一个技巧. 工具/原料 电脑 winrar(一般 ...
- OpenCV中Delaunay三角网算法例子
#include <opencv2/opencv.hpp> #include <vector> using namespace cv; using namespace std; ...
随机推荐
- 牛客-DongDong数颜色 及其相似题
大佬博客 ps:在牛客上做到这题不会,学会之后补了两道相关题.顺便记录一下. 牛客-DongDong数颜色 sol:dfs序+莫队,先把树上的点标上dfs序,因为子树的dfs序是连续的,所以子树可以表 ...
- Java IO: 其他字符流(下)
作者: Jakob Jenkov 译者: 李璟(jlee381344197@gmail.com) 本小节会简要概括Java IO中的PushbackReader,LineNumberReader,St ...
- [LC] 209. Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a contigu ...
- Qt QString类及常用函数功能详解
QString 是 Qt 编程中常用的类,除了用作数字量的输入输出之外,QString 还有很多其他功能,熟悉这些常见的功能,有助于灵活地实现字符串处理功能. QString 存储字符串釆用的是 Un ...
- whip|resist|patch|intimate|
a piece of leather or rope that is fastened to a stick, used for hitting animals or people 鞭子,皮鞭 She ...
- SSL_CTX结构体
/* 定义在ssl.h头文件中 */struct ssl_ctx_st { SSL_METHOD *method; unsigned long options; unsigned long mode; ...
- python标准库:csv 模块
原文地址:http://www.bugingcode.com/blog/python_csv.html csv 模块被用来读取CSV格式(用逗号分割数值)的数据文件,CSV格式的文件经常在微软的Exc ...
- 当async: true 时,ajax请求是异步的
方法beforeSend,用于在向服务器发送请求前添加一些处理函数. type:"GET",//通常会用到两种:GET,POST.默认是:GET url:" ...
- 烧光百亿的共享单车行业,ofo和摩拜到底该不该合并?
共享经济领域可谓一地鸡毛,除了众多不靠谱的跟风项目外--共享马扎."老公寄存屋",更多的是不绝于耳的倒闭消息.尤其是在共享单车行业,暂且不提那些体量小的项目,单单是倒闭的大型共享单 ...
- 未来京东真能成为中国第一大B2C电商平台吗?
2月10日,京东集团在北京举行2017年"科技引领未来"开年年会.在本届年会上,京东宣布全面向技术转型.京东集团CEO刘强东正式对外公布未来12年的战略:在以人工智能为 ...