Charm Bracelet

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23
首先我们要明白i,j,dp[i][j]都分别代表着什么
i:表示从1~i个物品里取
j:表示此时的最大容积
dp[i][j]:表示在1~i个物品里选取,每个物品只选择一次(限于01背包),且不超过j的容积,问所能得到的最大价值
得出一个转移方程f[i][j] = max(f[i][j], f[i - 1][j - c[i]] + w[i])
即在选取这个物品和不选这个物品中选择一个最大的
最后我们要输出的就是dp[n][m]表示在n个物品中,容积不超出m的最大价值
 #include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
int dp[][];
int w[],c[];
int main()
{
int n,m;
scanf ("%d%d",&n,&m);
for (int i = ;i<= n;i++)
{
scanf ("%d%d",&w[i],&c[i]);
}
for (int i = ;i <= n;i++)
{
for (int j = ;j <= m;j++)
{
dp[i][j] = dp[i-][j];
if (j-w[i]>=)
{
dp[i][j]=max(dp[i-][j],dp[i-][j-w[i]]+c[i]); } }
// cout<<dp[i][m]<<endl;
}
cout<<dp[n][m];
return ;
}
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f[v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v-c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[c]+w};
其中的f[v]=max{f[v],f[c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[c]},因为现在的f[c]就相当于原来的f[c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[c]推知,与本题意不符
 #include<iostream>
using namespace std;
int f[];
int main()
{
int n,v;
int w[], c[];
cin >> n >> v;
for(int i = ; i <= n; ++i)
cin >> w[i] >>c[i];
for(int i = ; i <= n; ++i){
for (int j=v ;j>=w[i] ; j--){
f[j] = max(f[j], f[j - w[i]] + c[i]);
}
}
cout << f[v]<<endl;
return ;
}
												

dp--01背包--Charm Bracelet的更多相关文章

  1. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

  2. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  3. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  4. HDOJ(HDU).2546 饭卡(DP 01背包)

    HDOJ(HDU).2546 饭卡(DP 01背包) 题意分析 首先要对钱数小于5的时候特别处理,直接输出0.若钱数大于5,所有菜按价格排序,背包容量为钱数-5,对除去价格最贵的所有菜做01背包.因为 ...

  5. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  6. UVA.10130 SuperSale (DP 01背包)

    UVA.10130 SuperSale (DP 01背包) 题意分析 现在有一家人去超市购物.每个人都有所能携带的重量上限.超市中的每个商品有其相应的价值和重量,并且有规定,每人每种商品最多购买一个. ...

  7. poj 2923 状压dp+01背包

    好牛b的思路 题意:一系列物品,用二辆车运送,求运送完所需的最小次数,两辆车必须一起走 解法为状态压缩DP+背包,本题的解题思路是先枚举选择若干个时的状态,总状态量为1<<n,判断这些状态 ...

  8. DP(01背包) UESTC 1218 Pick The Sticks (15CCPC C)

    题目传送门 题意:长度为L的金条,将n根金棍尽可能放上去,要求重心在L上,使得价值最大,最多有两条可以长度折半的放上去. 分析:首先长度可能为奇数,先*2.然后除了两条特殊的金棍就是01背包,所以dp ...

  9. hihoCoder#1055 : 刷油漆 (树形DP+01背包)

    题目大意:给一棵带点权的树,现在要从根节点开始选出m个连通的节点,使总权值最大. 题目分析:定义状态dp(u,m)表示在以u为根的子树从根节点开始选出m个点连通的最大总权值,则dp(u,m)=max( ...

随机推荐

  1. TensorFlow2 Part3:动态模型建立与训练

    Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow.Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计.调试.评估.应用和可视化 [ ...

  2. oracle11g更改字符集

    一.查看服务器字符集编码三种方式:1)select userenv('language') from dual; -- 推荐2)select * from V$NLS_PARAMETERS;3)sel ...

  3. 一百一十、SAP的OO-ALV之四,定义屏幕相关变量和逻辑流

    一.代码如下,定义相关变量 二.来带屏幕页面,双击STATUS_9000和USER_COMMAND_9000,自动生成相应代码 三.点击是 四.会自动生产关联的Includ文件 五.我们自己创建一个M ...

  4. 留学Essay写作常见谬误盘点

    留学生在完成英语论文作业的时候总会出现各种各样的谬误,导致最后拿不到高分,甚至挂科,最终只得选择写作完成.本文小编为大家总结出我们留学生在essay写作中几个常见谬误,希望大家有则改之,无则加勉. E ...

  5. Java的Regex --正则表达式

    一.概述 正则表达式通常被用来对字符串提供范围性的校验.替换那些符合某个模式(规则)的文本. 正则表达式所对应的类Pattern,所有的正则表达式都是在这个类下创建的.Pattern类用于创建一个正则 ...

  6. jupiter的@TempDir 等不生效

    jupiter与junit是 完全独立的测试组件,要严防在测试中将二者混用.最好在依赖引入jupiter 时 就将junit的依赖干掉,以防在写测试用例时将二者混用.不会报错,但是会导致 jupite ...

  7. UVA - 12118 Inspector's Dilemma(检查员的难题)(欧拉回路)

    题意:有一个n个点的无向完全图,找一条最短路(起点终点任意),使得该道路经过E条指定的边. 分析: 1.因为要使走过的路最短,所以每个指定的边最好只走一遍,所以是欧拉道路. 2.若当前连通的道路不是欧 ...

  8. CSS - input 美化

    input{ padding: 20px; width: 100%; height: 5vh; margin-bottom: 2vh; border-radius: 10vw; border: 0; ...

  9. jquery - 导航轮播图

    1,slider.js /** * slider插件可悬停控制 */ ; $(function ($, window, document, undefined) {   Slider = functi ...

  10. mount(挂载)

    拷贝文件到优盘 sdcm@sdcm:/mnt$ sudo fdisk -l Disk /dev/sdc: 15.5 GB, 15529279488 bytes255 heads, 63 sectors ...