#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long int64;
const int mod=;
#define maxn 2000005
int top,tot,d[maxn],prim[maxn],mu[maxn];
bool vis[maxn];
int64 n,f[maxn],ans;
void prepare(){
tot=top=,memset(vis,,sizeof(vis)),mu[]=,mu[]=,f[]=;
for (int i=;i<maxn;i++){
if (vis[i]==){
prim[++top]=i;
d[i]=i;
mu[i]=-;
f[i]=;
}
for (int j=;j<=top;j++){
if (i*prim[j]>=maxn) break;
vis[i*prim[j]]=;
if (i%prim[j]==){
d[i*prim[j]]=d[i]*prim[j];
mu[i*prim[j]]=;
f[i*prim[j]]=f[i/d[i]]*(f[d[i]]+);
break;
}else{
d[i*prim[j]]=prim[j];
mu[i*prim[j]]=mu[i]*mu[prim[j]];
f[i*prim[j]]=f[i]*f[prim[j]];
}
}
}
for (int i=;i<maxn;i++) mu[i]+=mu[i-];
for (int i=;i<maxn;i++) f[i]=(f[i-]+f[i])%mod;
}
#define maxp 100007
#define maxm 4000005
int now[maxp],prep[maxm];
int64 val[maxm],id[maxm];
void insert(int x,int64 y){
int pos=x%maxp;
prep[++tot]=now[pos],now[pos]=tot,val[tot]=y,id[tot]=x;
}
int64 find(int x){
int pos=x%maxp;
for (int i=now[pos];i;i=prep[i]){
if (id[i]==x) return val[i];
}
return -;
}
int64 Mu(int x){
if (x<maxn) return mu[x];
int64 temp=find(x),t;
if (temp!=-) return temp;
temp=;
for (int j,i=;i<=x;i=j+){
j=x/(x/i); t=Mu(x/i);
temp=((temp-1LL*(j-i+)*t%mod)%mod+mod)%mod;
}
insert(x,temp); return temp;
}
int64 F(int x){
if (x<maxn) return f[x];
int64 temp=;
for (int j,i=;i<=x;i=j+){
j=x/(x/i);
temp=(temp+1LL*(x/i)*(j-i+)%mod)%mod;
}
return temp%mod;
}
int main(){
int64 temp;
prepare();
scanf("%lld",&n);
ans=;
for (int j,i=;i<=n;i=j+){
j=n/(n/i); temp=F(n/i);
ans=(ans+1LL*(Mu(j)-Mu(i-))%mod*temp%mod*temp%mod)%mod;
}
printf("%lld\n",(ans%mod+mod)%mod);
return ;
}

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4176

题目大意:

 答案对10^9+7取模。  1<=n<=10^9,单组询问。

吐槽:这是一个对我来说启发很大的题,加深了我对杜教筛的理解。

做法:式子不好写,还是用图好了。

然后用莫比乌斯反演继续化简:

这样就好办了,floor(n/k)最多只有O(sqrt(n))级别的取值,维护mu的前缀和?没错,既然不能预处理,那我们就杜教筛,F数组呢,没错,F[i]=sigam(i/j),1<=j<=i,可以sqrt(n)级别的复杂度做出,如果我们尽可能多的预处理出mu和F,那么可以把总复杂度降至O(n^(2/3)),足以过此题。

数论专项测试——约数个数和(lucas的数论)的更多相关文章

  1. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  2. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  3. hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others) ...

  4. UVA - 294 Divisors【数论/区间内约数最多的数的约数个数】

    Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an int ...

  5. 牛客:t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数(数论+贪心)

    https://ac.nowcoder.com/acm/contest/907/B t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数 分析: 根据约数和定理:对于一个大于1正整数 ...

  6. 【FZYZOJ】数论课堂 题解(约数个数定理)

    前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3 ...

  7. Lucas的数论(math)

    Lucas的数论(math) 题目描述 去年的今日,Lucas仍然是一个热爱数学的孩子.(现在已经变成业界毒瘤了> <) 在整理以前的试题时,他发现了这么一道题目:求\(\sum\limi ...

  8. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

  9. bzoj 4176 Lucas的数论

    bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i= ...

随机推荐

  1. 5 个最好的3D游戏开发工具(转)

    转自:http://www.open-open.com/news/view/33a4f0 5 个最好的3D游戏开发工具 jopen 2012-11-19 22:56:21 • 发布 摘要:UDK(th ...

  2. SQL Server 2005、2008 的 datetime 值范围(转)

    SQL Server 2005.2008 的 datetime 最小值是:1753-01-01 00:00:00 最大值是:9999-12-31 23:59:59.997 这与 .NET 中的 Dat ...

  3. Android项目,从web上取下汉字,中文部分乱码

    Android项目,从web上取下汉字,中文部分乱码. 常见问题,搜索一下,网上有很多办法解决.如果还没有试过这个办法,可以尝试一下. BufferedReader in = new Buffered ...

  4. WP老杨解迷:可知评论系统还能勾搭用户呢

    玩家可以忍受任何游戏内的磨难,但偏偏不能忍受游戏外的挫折,这个游戏外可不是因为系统原因怒摔手机的义举,更加不是线下见面互炫菊花转投阵营的冲动,有可能是登录的瞬间,那小小的提示,又出问题了,登录不上去, ...

  5. 我的第一个 JSP (SSH) 个人网站【开源】

    唠叨两句背景 相当长时间没上来发帖了,最近几个月除了完成产品经理一个又一个重复又重复的app开发任务之外,最大的工作莫过于充分利用上笔主的业余时间,系统性地跟李刚同志学习JavaEE的SSH框架开发技 ...

  6. html文本标准模式,首行空两格,两端对齐,行高

    font-size: 13px; line-height: 1.6; text-align: justify; text-indent: 2em;

  7. 高端大气上档次Ergotron Neo-Flex+MBP Retina的组合~

  8. [BZOJ3714][PA2014]Kuglarz(MST)

    题目: Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子 ...

  9. poj-1314 Finding Rectangles

    题目地址: http://poj.org/problem?id=1314 题意: 给出一串的点,有些点可以构成正方形,请按照字符排序输出. 因为这道题的用处很大, 最近接触的cv 中的Rectangl ...

  10. 关于提高python程序执行效率的思路和想法

    相比编译型语言(C系列)python胜在简介的语法和优雅的动态编程体验,但是在执行效率上,python有解释性语言先天的劣势——执行效率较低,为了让编写出的程序获得更快的执行效率,开启此文章. pyt ...