Design and Analysis of Algorithms_Introduction
I collect and make up this pseudocode from the book:
<<Introduction to the Design and Analysis of Algorithms_Second Edition>> _ Anany Levitin
Note that throughout the paper, we assume that inputs to algorithms fall within their specified ranges and hence require no verfication. When implementing algorithms as programs to be used in actual applications, you should provide such verfications.
About pseudocode: For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as for, if and while. As you saw later, we use an arrow <- for the assignment operation and two slashes // for comments.
Algorithm Euclid(m, n)
// Computes gcd(m, n) by Euclid's algorithm
// Input: Two nonnegative, not-both-zero integers m and n
// Output: Greatest common divisor of m and n
while n ≠ do
r <- m mod n
m <- n
n <- r
return m
Algorithm Sieve(n)
// Implements the sieve of Eratosthenes
// Input: An integer n ≥ 2
// Output: Array L of all prime numbers less than or equal to n
for p <- to n do A[p] <- p
for p <- to ⌊√n⌋ do
if A[p] ≠ 0 // p hasn't been eliminated on previous passes
j <- p * p
while j ≤ n do
A[j] <- 0 // mark element as eliminated
j <- j + p
// copy the remaining elements of A to array L of the primes
i <- 0
for p <- 2 to n do
if A[p] ≠ 0
L[i] <- A[p]
i <- i + 1
return L
Euclid's algorithm, as presented in Euclid's treatise, uses subtractions rather than integer divisions. Write a pseudocode for this version of Euclid's Algorithm. Here is a nonrecursive version:
Algorithm Euclid2(m, n)
// Computes gcd(m, n) by Euclid's algorithm based on subtractions
// Input: Two nonnegative interges m and n not both equal to 0
// Output: The greatest common divisor of m and n
while n ≠ do
if m < n swap(m, n)
m <- m - n
return m
Write a pseudocode for an algorithm for finding real roots of equation ax^2 + bx + c = 0 for arbitrary real coefficients a, b and c.(You may assume the availability of the square root function sqrt(x).)
Algorithm Quadratic(a, b, c)
// The algorithm finds real roots of equation ax^2 + bx + c = 0
// Input: Real coefficients a, b, c
// Output: The real roots of the equation or a message about their absence
if a ≠
D <- b*b - *a*c
if D >
temp <- *a
x1 <- (-b + sqrt(D)) / temp
x2 <- (-b - sqrt(D)) / temp
return x1, x2
else if D =
return -b / (*a)
else
return 'no real roots'
else // a = 0
if b ≠ return -c / b
else // a = b = 0
if c = return 'all real numbers'
else return 'no real roots'
Write a pseudocode to describe the standard algorithm for finding the binary representation of a positive decimal integer
Algorithm Binary(n)
// The algorithm implements the standard method for finding
// the binary expansion of a positive decimal integer
// Input: A positive decimal integer n
// Output: The list b(k), b(k-1)..., b(1), b(0) of n's binary digits
k <-
while n ≠
bk <- n mod
n <- ⌊n/2⌋
k <- k +
The following algorithm for finding the distance between the two closest elements in an array of numbers.
Algorithm MinDistance(A[..n-])
// Input: An array A[0..n-1] of numbers
// Output: The minimum distance d between two of its elements
dmin <- ∞
for i <- to n- do
for j <- i+ to n- do
temp <- |A[i] - A[j]|
if temp < dmin
dmin <- temp
return dmin
Consider the algorithm for the sorting problem that sorts an array by counting, for each of its elements, the number of smaller elements and then uses this information to put the elements in ins appropriate position in the sorted array
Algorithm ComparisionCountingSort(A[..n-], S[..n-])
// Sorts an array by comparison counting
// Input: Array A[0..n-1] of orderable values
// Output: Array S[0..n-1] of A's elements sorted in nondecreasing order
for i <- to n- do
Count[i] <-
for i <- to n- do
for j <- i+ to n- do
if A[i] < A[j]
Count[j] <- Count[j] +
else
Count[i] <- Count[i] +
for i <- to n- do
S[Count[i]] <- A[i]
New words:
indentation: 缩排 sieve: 筛子 Eratosthenes: a man_埃拉托色尼 treatise: 论文;专著
quadratic: 二次方程式
(End_xpjiang)
Design and Analysis of Algorithms_Introduction的更多相关文章
- Design and Analysis of Algorithms_Decrease-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Divide-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Brute Froce
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- 6.046 Design and Analysis of Algorithms
课程信息 6.046 Design and Analysis of Algorithms
- 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)
误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...
- Algorithms: Design and Analysis, Part 1 - Programming Assignment #1
自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...
- Algorithms: Design and Analysis, Part 1 - Problem Set 1 - Question 5
最后一个图像,用画图软件绘制了一下,自己的直接主观判断还是有些小问题的 注意:最后的灰色的线条会超过橙色的线条
- EE就业最好的方向是转CS,其次是VLSI/ASIC DESIGN & VERIFICATION
Warald在2012年写过一篇文章<EE现在最好就业的方向是VLSI/ASIC DESIGN VERIFICATION>,三年过去了,很多学电子工程的同学想知道现在形势如何. 首先,按照 ...
随机推荐
- Nginx学习回顾总结 部分:
21:46 2015/11/9Nginx学习回顾总结进程间通信,近似于socket通信的的东西:才发现这种通信并不是很难,并不是我想象的那样很多内容,新领域,入门只是几个函数的使用而已.以前猜过是这样 ...
- Code[VS] 2152 滑雪题解
Code[VS] 2152 滑雪题解 题目描述 Description trs喜欢滑雪.他来到了一个滑雪场,这个滑雪场是一个矩形,为了简便,我们用r行c列的矩阵来表示每块地形.为了得到更快的速度,滑行 ...
- HDU 4002 Find the maximum(欧拉函数)
题目链接 猜了一个结论,题面跟欧拉函数有关系. import java.util.*; import java.math.*; import java.text.*; import java.io.* ...
- Android -- 服务组件的使用(1)
1. 效果图
- js-小效果-无缝滚动
<!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...
- 解决方案:Resharper对系统关键字提示‘can not resolve symbol XXX’,并且显示红色,但是编译没有问题
环境:Visual studio 2013 community update 4 + Resharper 8.2 + Windows 7现象:我的C#工程编译没有问题, 但是在代码编辑器中系统关键字显 ...
- 遍历Map的两种方法(有排序)
初始化一个map Map<String, String> map = new HashMap<String, String>(); map.put("1", ...
- Odoo Website 替换 Summernote 为第三方富文本编辑器
随着用odoo的人越来越多,奇葩的需求也是越来越多.... 这不,有同学就想替换掉website forum里边的summernote控件,花了点时间研究了一下,先说结论:替换是可行的. 先上替换之后 ...
- JPA入门例子(采用JPA的hibernate实现版本)
(1).JPA介绍: JPA全称为Java Persistence API ,Java持久化API是Sun公司在Java EE 5规范中提出的Java持久化接口.JPA吸取了目前Java持久化技术的优 ...
- loading.gif