Design and Analysis of Algorithms_Introduction
I collect and make up this pseudocode from the book:
<<Introduction to the Design and Analysis of Algorithms_Second Edition>> _ Anany Levitin
Note that throughout the paper, we assume that inputs to algorithms fall within their specified ranges and hence require no verfication. When implementing algorithms as programs to be used in actual applications, you should provide such verfications.
About pseudocode: For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as for, if and while. As you saw later, we use an arrow <- for the assignment operation and two slashes // for comments.
Algorithm Euclid(m, n)
// Computes gcd(m, n) by Euclid's algorithm
// Input: Two nonnegative, not-both-zero integers m and n
// Output: Greatest common divisor of m and n
while n ≠ do
r <- m mod n
m <- n
n <- r
return m
Algorithm Sieve(n)
// Implements the sieve of Eratosthenes
// Input: An integer n ≥ 2
// Output: Array L of all prime numbers less than or equal to n
for p <- to n do A[p] <- p
for p <- to ⌊√n⌋ do
if A[p] ≠ 0 // p hasn't been eliminated on previous passes
j <- p * p
while j ≤ n do
A[j] <- 0 // mark element as eliminated
j <- j + p
// copy the remaining elements of A to array L of the primes
i <- 0
for p <- 2 to n do
if A[p] ≠ 0
L[i] <- A[p]
i <- i + 1
return L
Euclid's algorithm, as presented in Euclid's treatise, uses subtractions rather than integer divisions. Write a pseudocode for this version of Euclid's Algorithm. Here is a nonrecursive version:
Algorithm Euclid2(m, n)
// Computes gcd(m, n) by Euclid's algorithm based on subtractions
// Input: Two nonnegative interges m and n not both equal to 0
// Output: The greatest common divisor of m and n
while n ≠ do
if m < n swap(m, n)
m <- m - n
return m
Write a pseudocode for an algorithm for finding real roots of equation ax^2 + bx + c = 0 for arbitrary real coefficients a, b and c.(You may assume the availability of the square root function sqrt(x).)
Algorithm Quadratic(a, b, c)
// The algorithm finds real roots of equation ax^2 + bx + c = 0
// Input: Real coefficients a, b, c
// Output: The real roots of the equation or a message about their absence
if a ≠
D <- b*b - *a*c
if D >
temp <- *a
x1 <- (-b + sqrt(D)) / temp
x2 <- (-b - sqrt(D)) / temp
return x1, x2
else if D =
return -b / (*a)
else
return 'no real roots'
else // a = 0
if b ≠ return -c / b
else // a = b = 0
if c = return 'all real numbers'
else return 'no real roots'
Write a pseudocode to describe the standard algorithm for finding the binary representation of a positive decimal integer
Algorithm Binary(n)
// The algorithm implements the standard method for finding
// the binary expansion of a positive decimal integer
// Input: A positive decimal integer n
// Output: The list b(k), b(k-1)..., b(1), b(0) of n's binary digits
k <-
while n ≠
bk <- n mod
n <- ⌊n/2⌋
k <- k +
The following algorithm for finding the distance between the two closest elements in an array of numbers.
Algorithm MinDistance(A[..n-])
// Input: An array A[0..n-1] of numbers
// Output: The minimum distance d between two of its elements
dmin <- ∞
for i <- to n- do
for j <- i+ to n- do
temp <- |A[i] - A[j]|
if temp < dmin
dmin <- temp
return dmin
Consider the algorithm for the sorting problem that sorts an array by counting, for each of its elements, the number of smaller elements and then uses this information to put the elements in ins appropriate position in the sorted array
Algorithm ComparisionCountingSort(A[..n-], S[..n-])
// Sorts an array by comparison counting
// Input: Array A[0..n-1] of orderable values
// Output: Array S[0..n-1] of A's elements sorted in nondecreasing order
for i <- to n- do
Count[i] <-
for i <- to n- do
for j <- i+ to n- do
if A[i] < A[j]
Count[j] <- Count[j] +
else
Count[i] <- Count[i] +
for i <- to n- do
S[Count[i]] <- A[i]
New words:
indentation: 缩排 sieve: 筛子 Eratosthenes: a man_埃拉托色尼 treatise: 论文;专著
quadratic: 二次方程式
(End_xpjiang)
Design and Analysis of Algorithms_Introduction的更多相关文章
- Design and Analysis of Algorithms_Decrease-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Divide-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Brute Froce
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- 6.046 Design and Analysis of Algorithms
课程信息 6.046 Design and Analysis of Algorithms
- 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)
误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...
- Algorithms: Design and Analysis, Part 1 - Programming Assignment #1
自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...
- Algorithms: Design and Analysis, Part 1 - Problem Set 1 - Question 5
最后一个图像,用画图软件绘制了一下,自己的直接主观判断还是有些小问题的 注意:最后的灰色的线条会超过橙色的线条
- EE就业最好的方向是转CS,其次是VLSI/ASIC DESIGN & VERIFICATION
Warald在2012年写过一篇文章<EE现在最好就业的方向是VLSI/ASIC DESIGN VERIFICATION>,三年过去了,很多学电子工程的同学想知道现在形势如何. 首先,按照 ...
随机推荐
- TC SRM 593 DIV1 250
我只能说的亏没做,要不就挂0了.. 本来想四色定理,肯定4就可以的...然后准备爆,发现3的时候不好爆,又想了老一会,嗯,数据范围不小,应该不是暴力,直接找规律,貌似最大就是3,有一个3连块,输出3, ...
- osg中的视点控制
osg中的视点控制 osg的视点控制基类是CameraManipulator, 它是一个虚基类, 有用的方法都跟home有关. 在这个类里面有三个重要的成员变量: osg::Vec3d _homeEy ...
- 兼容性好的CSS字体投影
<p>兼容性良好的css文字描边</p> <style><!-- h1, p { color: #fff; width: 100%; text-align: ...
- Redis入门笔记(二)-配置及运行
转自: http://gly199.iteye.com/blog/1056424 1.redis基本参数 redis的配置文件中的常见参数如下: daemonize 是否以后台进程运行,默认为no ...
- [LintCode] Reverse Nodes in k-Group 每k个一组翻转链表
Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. If ...
- 聚合函数:sum,avg,max,min,count
group by 分组的使用方法 数学函数:ABS.ceiling.floor.power.round.sqrt.square 练习:
- 关于http协议的理解
一.状态码 1.200:请求成功. 2.302:浏览器进行重定向. 3.304:资源已使用,即有缓存. 4.404:请求失败,请求的资源未在服务器上发现. 5.500:服务器端发生错误. 二.php获 ...
- JAVA中序列化和反序列化
一般程序在运行时,产生对象,这些对象随着程序的停止运行而消失(java回收机制)但如果我们想把某些对象(因为是对象,所以有各自不同的特性)保存下来,在程序终止运行后,这些对象仍然存在,可以在程序再次运 ...
- python 数据类型基础
Python3 运算符 什么是运算符? 本章节主要说明Python的运算符.举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符. 1.算术运 ...
- DOS运行命令
运行命令主要是DOS操作系统的运行方式.DOS时代的时候,为了方便用户的操作,微软公司将一些常用的命令,如DIR,CD等命令全部集成在系统里面. 基本定义 对于DOS来说是一个很大的优点.而存放这些内 ...