“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第1章课程讲义下载(PDF)

Summary

  • Matrix

    A matrix is a rectangular array of elements. Matrix $A$ is denoted by $$A = \begin{bmatrix}a_{11} & \cdots & a_{1n}\\ \vdots&\vdots&\vdots \\ a_{m1}& \cdots & a_{mn} \end{bmatrix}$$
  • Vector

    A vector is a matrix that has only one row or one column. For example, $[1, 2, 3]$ is a row vector of dimension 3, and $\begin{bmatrix}1 \\ 2 \\ 3 \end{bmatrix}$ is a column vector of dimension 3.
  • Equal matrices

    Two matrices $[A]$ and $[B]$ are equal if the size of $[A]$ and $[B]$ is the same, that is, the number of rows and columns of $[A]$ are same as that of $[B]$. And $a_{ij}=b_{ij}$ for all $i$ and $j$.
  • Zero matrix

    A matrix whose all entries are zero is called a zero matrix, that is, $a_{ij}=0$ for all $i$ and $j$. For example, $$A = \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}$$
  • Submatrix

    If some rows or/and columns of a matrix $[A]$ are deleted (no rows or columns may be deleted), the remaining matrix is called a submatrix of $[A]$. For example, some of the submatrix of $\begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}$ are $$[1],\ [1, 2],\ \begin{bmatrix}1\\3\\5\end{bmatrix},\ \begin{bmatrix} 1 & 2\\3 & 4 \end{bmatrix},\ \begin{bmatrix} 1 & 2\\5 & 6 \end{bmatrix},\ \begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}.$$
  • Square matrix

    If the number of rows of a matrix is equal to the number of columns of a matrix, then the matrix is called a square matrix. For example, $$A = \begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}$$
  • Diagonal matrix

    A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, only the diagonal entries of the square matrix can be non-zero, $a_{ij} = 0$ for $i\neq j$. For example, $$A=\begin{bmatrix}1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 5 \end{bmatrix}$$
  • Identity matrix

    A diagonal matrix with all diagonal elements equal to 1 is called an identity matrix, that is, $a_{ij}=0$, $i\neq j$ for all $i$, $j$ and $a_{ii}=1$ for all $i$. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$
  • Upper triangular matrix

    A $n\times n$ matrix for which $a_{ij} = 0$, $i > j$ for all $i$, $j$ is called an upper triangular matrix. That is, all the elements below the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 3\\ 0 & 5 & 6\\ 0 & 0 & 9 \end{bmatrix}$$
  • Lower triangular matrix

    A $n\times n$ matrix for which $a_{ij} = 0$, $j > i$ for all $i$, $j$ is called a lower triangular matrix. That is, all the elements above the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 4 & 5 & 0\\ 0 & 8 & 9 \end{bmatrix}$$
  • Tridiagonal matrix

    A tridiagonal matrix is a square matrix in which all elements not on the following are zero: the major diagonal, the diagonal above the major diagonal, and the diagonal below the major diagonal. For example, $$A = \begin{bmatrix}1 & 2 & 0 & 0\\ 4 & 5 & 6 & 0\\ 0 & 0 & 7 & 8\\ 0& 0& -1& 2 \end{bmatrix}$$ Note that a non-square matrix also has diagonal entries. For an $m\times n$ matrix, the diagonal entries are $a_{11}$, $\cdots$, $a_{kk}$ where $k=\min\{m, n\}$. For example, $$A = \begin{bmatrix}1& 2\\ 3& 4 \\ 5& 6\end{bmatrix}$$ the diagonal elements are $a_{11}=1$ and $a_{22}=4$.
  • Diagonally dominant matrix

    An $n\times n$ square matrix $[A]$ is a diagonal dominant matrix of $$|a_{ii}|\geq \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for $i = 1, \cdots, n$ and $$|a_{ii}| > \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for at least one $i$. That is, for each row, the absolute value of the diagonal element is greater than or equal to the sum of the absolute values of the rest of the elements of that row, and that the inequality is strictly greater than for at least one row. For example, $$A = \begin{bmatrix}15& 6& 7\\ 2& -4& -2\\ 3& 2& 6 \end{bmatrix}$$ is a diagonal dominant matrix since $$\begin{cases}|a_{11}| = 15 \geq |a_{12}| + |a_{13}| =13\\ |a_{22}|= 4 \geq |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 \geq |a_{31}| + |a_{32}| = 5 \end{cases}$$ and for at least one row, that is row 1 and row 3 in this case, the inequality is a strictly greater than inequality.

Selected Problems

1. Given $$A=\begin{bmatrix}6& 2& 3& 9\\ 0& 1& 2& 3\\ 0& 0& 4& 5\\ 0& 0& 0& 6 \end{bmatrix}$$ then $[A]$ is a ( ) matrix.

Solution:

This is an upper triangular matrix.

2. A square matrix $[A]$ is lower triangular if ( ).

Solution:

Lower triangular matrix: $a_{ij} = 0$ for $j > i$.

3. Given $$A = \begin{bmatrix} 12.3& -12.3& 20.3\\ 11.3& -10.3& -11.3\\ 10.3& -11.3& -12.3\end{bmatrix},\ B = \begin{bmatrix} 2& 4\\ -5& 6\\ 11& -20\end{bmatrix}$$ then if $[C] = [A]\cdot[B]$, then $c_{31}= ( )$.

Solution:

$$c_{31} = \begin{bmatrix}10.3 & -11.3 &-12.3\end{bmatrix}\cdot \begin{bmatrix}2\\ -5\\ 11 \end{bmatrix}$$ $$= 10.3\times2 + (-11.3)\times(-5) + (-12.3)\times11= -58.2$$

4. The following system of equations has ( ) solutions. $$\begin{cases}x + y =2\\ 6x + 6y=12 \end{cases}$$

Solution:

$x=2-y$ where $y$ is arbitrary. Thus it has infinite solutions.

5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, Dude keeps ${1/5}^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps ${1/3}^{rd}$ of its customers, while the rest switch to Dude. If in 2003, Dude had ${1/6}^{th}$ of the market and Imac had ${5/6}^{th}$ of the market, what will be the share of Dude computers when the market becomes stable?

Solution:

Since we want when the market is stable, the market share should not change from year to year. Let $D$ and $M$ denote the market of Dude and Imac, respectively. Thus we have $$\begin{cases} D_n = {1\over5}D + {2\over3}M\\ M_n= {4\over5}D + {1\over3}M\end{cases}\Rightarrow \begin{bmatrix}D_n\\ M_n \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3}\\ {4\over5}& {1\over3} \end{bmatrix}\cdot \begin{bmatrix}D\\ M\end{bmatrix}$$ $D_n = D$ and $M_n=M$ eventually. That is $$\begin{cases}{4\over5}D - {2\over3} M=0 \\ D+M=1\end{cases}\Rightarrow\begin{cases}D = {5\over11}\\ M= {6\over11} \end{cases}$$ Hence the final market share of Dude will be $\displaystyle{5\over11}$.

6. Three kids - Jim, Corey and David receive an inheritance of 2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey's trust is three times that of David's because Corey made an A in Dr. Kaw's class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6%, 8%, 11%, respectively. The total interest of all the three trusts combined at the end of the first year is 190,740.57. The equations to find the trust money of Jim (J), Corey (C) and David (D) in a matrix form is ( ).

Solution:

From the given conditions, we have $$\begin{cases}J + C +D =2253453\\ C=3D\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{cases}J + C +D =2253453\\ C-3D = 0\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& -3\\ 0.06& 0.08& 0.11 \end{bmatrix}\cdot \begin{bmatrix}J\\ C\\ D \end{bmatrix} = \begin{bmatrix}2253453\\ 0\\ 190740.57 \end{bmatrix}$$

7. Which of the following matrices are strictly diagonally dominant? $$A = \begin{bmatrix}15 &6 &7\\ 2 &-4 &2\\ 3& 2 &6 \end{bmatrix},\ B = \begin{bmatrix}5 &6 &7\\ 2 &-4 &2\\ 3& 2 &-5 \end{bmatrix},\ C = \begin{bmatrix}5&3 &2\\ 6 &-8 &2\\ 7& -5 &12 \end{bmatrix}. $$

Solution:

For $A$, $$\begin{cases}|a_{11}|=15 > |a_{12}| + |a_{13}| = 13\\ |a_{22}| = 4 = |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 > |a_{31}| + |a_{32}| = 5 \end{cases}$$ So it is strictly diagonal dominant. For $B$, $$|b_{11}| = 5 < |b_{12}| + |b_{13}| = 13$$ So it is not strictly diagonal dominant. For $C$, $$\begin{cases}|c_{11}|=5 = |c_{12}| + |c_{13}| = 5\\ |c_{22}| = 8 = |c_{21}| + |c_{23}| = 8\\ |c_{33}| = 12 = |c_{31}| + |c_{32}| = 12 \end{cases}$$ So it is not strictly diagonal dominant.

A.Kaw矩阵代数初步学习笔记 1. Introduction的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. Java中primitive type的线程安全性

    Java中primite type,如char,integer,bool之类的,它们的读写操作都是atomic的,但是有几个例外: long和double类型不是atomic的,因为long和doub ...

  2. 解决Cannot change version of project facet Dynamic web module to 2.5

    我们用Eclipse创建Maven结构的web项目的时候选择了Artifact Id为maven-artchetype-webapp,由于这个catalog比较老,用的servlet还是2.3的,而一 ...

  3. 在线音乐网站【04】Part two 功能实现

       上一篇博客里面已近总结了三个功能的具体实现,今天把剩余功能的具体实现补充总结,如果你想对整个小项目有清楚的了解,建议去看下前几篇博客. 1.在线音乐网站(1)需求和功能结构 2.在线音乐网站(2 ...

  4. lecture1-NN的简介

    这是DL的发明人Hinton在多伦多大学的2013年冬季教授de课程,并将视频分享到coursera网站上.其中不但有视频,也有课件,但是Hinton主页上还有他上课的课后问题,Hinton告诉学生这 ...

  5. Canvas之打字机游戏

    最近针对粒子化作了一点点的探究,决定结合其做个小游戏,于是这个简单的打字游戏出世了. 试玩地址:Typewriter game  仅在chrome下测试,请谨慎使用其他浏览器(特别是ff):加载速度有 ...

  6. Android热修复实践应用--AndFix

    一直关注App的热修复的技术发展,之前做的应用也没用使用到什么热修复开源框架.在App的热修复框架没有流行之前,做的应用上线后发现一个小小的Bug,就要马上发一个新的版本.我亲身经历过一周发两个版本, ...

  7. Entity Framework与ADO.Net及NHibernate的比较

    Entity Framework  是微软推荐出.NET平台ORM开发组件, EF相对于ado.net 的优点 (1)开发效率高,Entity Framework的优势就是拥有更好的LINQ提供程序. ...

  8. Repeater——数据库控件学习

    1.Repeater控件的使用:(用于重复加载一些内容,把要重复加载的代码写在ItemTemplate里面) 脱完控件后,在设计视图中配置数据源即可~ 2.ListView(数据显示,分页此控件一拖千 ...

  9. mysql创建触发器

    触发器语句只有一句话 可以省略begin和end CREATE trigger `do_praise` after insert on praise for each row update post ...

  10. WPS Office Pro 2016 专业版

    感觉WPS还是不错的,Office安装包太大了.嘻嘻 政府专用正版序列号激活码,可永久有效激活! THUV2-32HH7-6NMHN-PTX7Y-QQCTH WPS Office Pro 2016 专 ...