“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第1章课程讲义下载(PDF)

Summary

  • Matrix

    A matrix is a rectangular array of elements. Matrix $A$ is denoted by $$A = \begin{bmatrix}a_{11} & \cdots & a_{1n}\\ \vdots&\vdots&\vdots \\ a_{m1}& \cdots & a_{mn} \end{bmatrix}$$
  • Vector

    A vector is a matrix that has only one row or one column. For example, $[1, 2, 3]$ is a row vector of dimension 3, and $\begin{bmatrix}1 \\ 2 \\ 3 \end{bmatrix}$ is a column vector of dimension 3.
  • Equal matrices

    Two matrices $[A]$ and $[B]$ are equal if the size of $[A]$ and $[B]$ is the same, that is, the number of rows and columns of $[A]$ are same as that of $[B]$. And $a_{ij}=b_{ij}$ for all $i$ and $j$.
  • Zero matrix

    A matrix whose all entries are zero is called a zero matrix, that is, $a_{ij}=0$ for all $i$ and $j$. For example, $$A = \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}$$
  • Submatrix

    If some rows or/and columns of a matrix $[A]$ are deleted (no rows or columns may be deleted), the remaining matrix is called a submatrix of $[A]$. For example, some of the submatrix of $\begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}$ are $$[1],\ [1, 2],\ \begin{bmatrix}1\\3\\5\end{bmatrix},\ \begin{bmatrix} 1 & 2\\3 & 4 \end{bmatrix},\ \begin{bmatrix} 1 & 2\\5 & 6 \end{bmatrix},\ \begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}.$$
  • Square matrix

    If the number of rows of a matrix is equal to the number of columns of a matrix, then the matrix is called a square matrix. For example, $$A = \begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}$$
  • Diagonal matrix

    A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, only the diagonal entries of the square matrix can be non-zero, $a_{ij} = 0$ for $i\neq j$. For example, $$A=\begin{bmatrix}1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 5 \end{bmatrix}$$
  • Identity matrix

    A diagonal matrix with all diagonal elements equal to 1 is called an identity matrix, that is, $a_{ij}=0$, $i\neq j$ for all $i$, $j$ and $a_{ii}=1$ for all $i$. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$
  • Upper triangular matrix

    A $n\times n$ matrix for which $a_{ij} = 0$, $i > j$ for all $i$, $j$ is called an upper triangular matrix. That is, all the elements below the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 3\\ 0 & 5 & 6\\ 0 & 0 & 9 \end{bmatrix}$$
  • Lower triangular matrix

    A $n\times n$ matrix for which $a_{ij} = 0$, $j > i$ for all $i$, $j$ is called a lower triangular matrix. That is, all the elements above the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 4 & 5 & 0\\ 0 & 8 & 9 \end{bmatrix}$$
  • Tridiagonal matrix

    A tridiagonal matrix is a square matrix in which all elements not on the following are zero: the major diagonal, the diagonal above the major diagonal, and the diagonal below the major diagonal. For example, $$A = \begin{bmatrix}1 & 2 & 0 & 0\\ 4 & 5 & 6 & 0\\ 0 & 0 & 7 & 8\\ 0& 0& -1& 2 \end{bmatrix}$$ Note that a non-square matrix also has diagonal entries. For an $m\times n$ matrix, the diagonal entries are $a_{11}$, $\cdots$, $a_{kk}$ where $k=\min\{m, n\}$. For example, $$A = \begin{bmatrix}1& 2\\ 3& 4 \\ 5& 6\end{bmatrix}$$ the diagonal elements are $a_{11}=1$ and $a_{22}=4$.
  • Diagonally dominant matrix

    An $n\times n$ square matrix $[A]$ is a diagonal dominant matrix of $$|a_{ii}|\geq \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for $i = 1, \cdots, n$ and $$|a_{ii}| > \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for at least one $i$. That is, for each row, the absolute value of the diagonal element is greater than or equal to the sum of the absolute values of the rest of the elements of that row, and that the inequality is strictly greater than for at least one row. For example, $$A = \begin{bmatrix}15& 6& 7\\ 2& -4& -2\\ 3& 2& 6 \end{bmatrix}$$ is a diagonal dominant matrix since $$\begin{cases}|a_{11}| = 15 \geq |a_{12}| + |a_{13}| =13\\ |a_{22}|= 4 \geq |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 \geq |a_{31}| + |a_{32}| = 5 \end{cases}$$ and for at least one row, that is row 1 and row 3 in this case, the inequality is a strictly greater than inequality.

Selected Problems

1. Given $$A=\begin{bmatrix}6& 2& 3& 9\\ 0& 1& 2& 3\\ 0& 0& 4& 5\\ 0& 0& 0& 6 \end{bmatrix}$$ then $[A]$ is a ( ) matrix.

Solution:

This is an upper triangular matrix.

2. A square matrix $[A]$ is lower triangular if ( ).

Solution:

Lower triangular matrix: $a_{ij} = 0$ for $j > i$.

3. Given $$A = \begin{bmatrix} 12.3& -12.3& 20.3\\ 11.3& -10.3& -11.3\\ 10.3& -11.3& -12.3\end{bmatrix},\ B = \begin{bmatrix} 2& 4\\ -5& 6\\ 11& -20\end{bmatrix}$$ then if $[C] = [A]\cdot[B]$, then $c_{31}= ( )$.

Solution:

$$c_{31} = \begin{bmatrix}10.3 & -11.3 &-12.3\end{bmatrix}\cdot \begin{bmatrix}2\\ -5\\ 11 \end{bmatrix}$$ $$= 10.3\times2 + (-11.3)\times(-5) + (-12.3)\times11= -58.2$$

4. The following system of equations has ( ) solutions. $$\begin{cases}x + y =2\\ 6x + 6y=12 \end{cases}$$

Solution:

$x=2-y$ where $y$ is arbitrary. Thus it has infinite solutions.

5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, Dude keeps ${1/5}^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps ${1/3}^{rd}$ of its customers, while the rest switch to Dude. If in 2003, Dude had ${1/6}^{th}$ of the market and Imac had ${5/6}^{th}$ of the market, what will be the share of Dude computers when the market becomes stable?

Solution:

Since we want when the market is stable, the market share should not change from year to year. Let $D$ and $M$ denote the market of Dude and Imac, respectively. Thus we have $$\begin{cases} D_n = {1\over5}D + {2\over3}M\\ M_n= {4\over5}D + {1\over3}M\end{cases}\Rightarrow \begin{bmatrix}D_n\\ M_n \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3}\\ {4\over5}& {1\over3} \end{bmatrix}\cdot \begin{bmatrix}D\\ M\end{bmatrix}$$ $D_n = D$ and $M_n=M$ eventually. That is $$\begin{cases}{4\over5}D - {2\over3} M=0 \\ D+M=1\end{cases}\Rightarrow\begin{cases}D = {5\over11}\\ M= {6\over11} \end{cases}$$ Hence the final market share of Dude will be $\displaystyle{5\over11}$.

6. Three kids - Jim, Corey and David receive an inheritance of 2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey's trust is three times that of David's because Corey made an A in Dr. Kaw's class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6%, 8%, 11%, respectively. The total interest of all the three trusts combined at the end of the first year is 190,740.57. The equations to find the trust money of Jim (J), Corey (C) and David (D) in a matrix form is ( ).

Solution:

From the given conditions, we have $$\begin{cases}J + C +D =2253453\\ C=3D\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{cases}J + C +D =2253453\\ C-3D = 0\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& -3\\ 0.06& 0.08& 0.11 \end{bmatrix}\cdot \begin{bmatrix}J\\ C\\ D \end{bmatrix} = \begin{bmatrix}2253453\\ 0\\ 190740.57 \end{bmatrix}$$

7. Which of the following matrices are strictly diagonally dominant? $$A = \begin{bmatrix}15 &6 &7\\ 2 &-4 &2\\ 3& 2 &6 \end{bmatrix},\ B = \begin{bmatrix}5 &6 &7\\ 2 &-4 &2\\ 3& 2 &-5 \end{bmatrix},\ C = \begin{bmatrix}5&3 &2\\ 6 &-8 &2\\ 7& -5 &12 \end{bmatrix}. $$

Solution:

For $A$, $$\begin{cases}|a_{11}|=15 > |a_{12}| + |a_{13}| = 13\\ |a_{22}| = 4 = |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 > |a_{31}| + |a_{32}| = 5 \end{cases}$$ So it is strictly diagonal dominant. For $B$, $$|b_{11}| = 5 < |b_{12}| + |b_{13}| = 13$$ So it is not strictly diagonal dominant. For $C$, $$\begin{cases}|c_{11}|=5 = |c_{12}| + |c_{13}| = 5\\ |c_{22}| = 8 = |c_{21}| + |c_{23}| = 8\\ |c_{33}| = 12 = |c_{31}| + |c_{32}| = 12 \end{cases}$$ So it is not strictly diagonal dominant.

A.Kaw矩阵代数初步学习笔记 1. Introduction的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. 塔吊力矩限制器,塔吊黑匣子,塔吊电脑,tower crane

    塔机力矩限制器,tower crane 适用于各种类型的固定臂塔机和可变臂塔机 塔机力矩限制器是塔式起重机机械的安全保护装置,本产品采用32位高性能微处理器为硬件平台,软件算法采用国内最先进的三滑轮取 ...

  2. TCP/IP中最高大上的链路层简介(二)

    引言 对于程序猿来讲,似乎越接近底层,就越显得高大上.这也算是程序猿们的共同认知吧,虽然不是所有人.今天LZ就和各位一起探讨一下TCP/IP中最高大上的一层,也就是最底层的链路层. 这一层LZ了解的还 ...

  3. Python3.5 + django1.8.5 安装”import pymysql pymysql.install_as_MySQLdb()”的解决方法

    最近在学习Python,打算先看两个在线教程,再在github上找几个开源的项目练习一下,在学到"被解放的姜戈"时遇到django同步数据库时无法执行的错误,记录一下. 错误现象: ...

  4. sFlow

    http://www.sflow.org/developers/specifications.php http://www.inmon.com/technology/index.php sFlow s ...

  5. Matlab绘图详解

    Matlab绘图 强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数.此外,M ...

  6. TF-IDF

    TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或 ...

  7. javascript正则表达式验证IP,URL

    验证IP function isIP(ipstr){ var reg = /^(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.(\d{1,2}|1\d\d|2[0-4]\d|25[ ...

  8. 61-umask 简明笔记

    设定在创建文件时的权限掩码 umask [mask] 参数 mask可以是3位八进制数或者是如同在chmod中使用的符号值,mask指定不允许的权限(文件的实际权限是777减去umask值) 如果没有 ...

  9. nginx 编译参数详解(运维不得不看)

    nginx参数: --prefix= 指向安装目录 --sbin-path 指向(执行)程序文件(nginx) --conf-path= 指向配置文件(nginx.conf) --error-log- ...

  10. javascript 红宝书笔记之函数、变量、参数、作用域

    ECMAScript 不介意传进来多少个参数,也不介意传进来的参数类型.     理解参数:      命名的参数只提供便利,不是必需的.     ECMAScript 的变量包含两种不同的数据类型的 ...