A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第1章课程讲义下载(PDF)
Summary
- Matrix
A matrix is a rectangular array of elements. Matrix $A$ is denoted by $$A = \begin{bmatrix}a_{11} & \cdots & a_{1n}\\ \vdots&\vdots&\vdots \\ a_{m1}& \cdots & a_{mn} \end{bmatrix}$$ - Vector
A vector is a matrix that has only one row or one column. For example, $[1, 2, 3]$ is a row vector of dimension 3, and $\begin{bmatrix}1 \\ 2 \\ 3 \end{bmatrix}$ is a column vector of dimension 3. - Equal matrices
Two matrices $[A]$ and $[B]$ are equal if the size of $[A]$ and $[B]$ is the same, that is, the number of rows and columns of $[A]$ are same as that of $[B]$. And $a_{ij}=b_{ij}$ for all $i$ and $j$. - Zero matrix
A matrix whose all entries are zero is called a zero matrix, that is, $a_{ij}=0$ for all $i$ and $j$. For example, $$A = \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}$$ - Submatrix
If some rows or/and columns of a matrix $[A]$ are deleted (no rows or columns may be deleted), the remaining matrix is called a submatrix of $[A]$. For example, some of the submatrix of $\begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}$ are $$[1],\ [1, 2],\ \begin{bmatrix}1\\3\\5\end{bmatrix},\ \begin{bmatrix} 1 & 2\\3 & 4 \end{bmatrix},\ \begin{bmatrix} 1 & 2\\5 & 6 \end{bmatrix},\ \begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}.$$ - Square matrix
If the number of rows of a matrix is equal to the number of columns of a matrix, then the matrix is called a square matrix. For example, $$A = \begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}$$ - Diagonal matrix
A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, only the diagonal entries of the square matrix can be non-zero, $a_{ij} = 0$ for $i\neq j$. For example, $$A=\begin{bmatrix}1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 5 \end{bmatrix}$$ - Identity matrix
A diagonal matrix with all diagonal elements equal to 1 is called an identity matrix, that is, $a_{ij}=0$, $i\neq j$ for all $i$, $j$ and $a_{ii}=1$ for all $i$. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$ - Upper triangular matrix
A $n\times n$ matrix for which $a_{ij} = 0$, $i > j$ for all $i$, $j$ is called an upper triangular matrix. That is, all the elements below the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 3\\ 0 & 5 & 6\\ 0 & 0 & 9 \end{bmatrix}$$ - Lower triangular matrix
A $n\times n$ matrix for which $a_{ij} = 0$, $j > i$ for all $i$, $j$ is called a lower triangular matrix. That is, all the elements above the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 4 & 5 & 0\\ 0 & 8 & 9 \end{bmatrix}$$ - Tridiagonal matrix
A tridiagonal matrix is a square matrix in which all elements not on the following are zero: the major diagonal, the diagonal above the major diagonal, and the diagonal below the major diagonal. For example, $$A = \begin{bmatrix}1 & 2 & 0 & 0\\ 4 & 5 & 6 & 0\\ 0 & 0 & 7 & 8\\ 0& 0& -1& 2 \end{bmatrix}$$ Note that a non-square matrix also has diagonal entries. For an $m\times n$ matrix, the diagonal entries are $a_{11}$, $\cdots$, $a_{kk}$ where $k=\min\{m, n\}$. For example, $$A = \begin{bmatrix}1& 2\\ 3& 4 \\ 5& 6\end{bmatrix}$$ the diagonal elements are $a_{11}=1$ and $a_{22}=4$. - Diagonally dominant matrix
An $n\times n$ square matrix $[A]$ is a diagonal dominant matrix of $$|a_{ii}|\geq \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for $i = 1, \cdots, n$ and $$|a_{ii}| > \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for at least one $i$. That is, for each row, the absolute value of the diagonal element is greater than or equal to the sum of the absolute values of the rest of the elements of that row, and that the inequality is strictly greater than for at least one row. For example, $$A = \begin{bmatrix}15& 6& 7\\ 2& -4& -2\\ 3& 2& 6 \end{bmatrix}$$ is a diagonal dominant matrix since $$\begin{cases}|a_{11}| = 15 \geq |a_{12}| + |a_{13}| =13\\ |a_{22}|= 4 \geq |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 \geq |a_{31}| + |a_{32}| = 5 \end{cases}$$ and for at least one row, that is row 1 and row 3 in this case, the inequality is a strictly greater than inequality.
Selected Problems
1. Given $$A=\begin{bmatrix}6& 2& 3& 9\\ 0& 1& 2& 3\\ 0& 0& 4& 5\\ 0& 0& 0& 6 \end{bmatrix}$$ then $[A]$ is a ( ) matrix.
Solution:
This is an upper triangular matrix.
2. A square matrix $[A]$ is lower triangular if ( ).
Solution:
Lower triangular matrix: $a_{ij} = 0$ for $j > i$.
3. Given $$A = \begin{bmatrix} 12.3& -12.3& 20.3\\ 11.3& -10.3& -11.3\\ 10.3& -11.3& -12.3\end{bmatrix},\ B = \begin{bmatrix} 2& 4\\ -5& 6\\ 11& -20\end{bmatrix}$$ then if $[C] = [A]\cdot[B]$, then $c_{31}= ( )$.
Solution:
$$c_{31} = \begin{bmatrix}10.3 & -11.3 &-12.3\end{bmatrix}\cdot \begin{bmatrix}2\\ -5\\ 11 \end{bmatrix}$$ $$= 10.3\times2 + (-11.3)\times(-5) + (-12.3)\times11= -58.2$$
4. The following system of equations has ( ) solutions. $$\begin{cases}x + y =2\\ 6x + 6y=12 \end{cases}$$
Solution:
$x=2-y$ where $y$ is arbitrary. Thus it has infinite solutions.
5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, Dude keeps ${1/5}^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps ${1/3}^{rd}$ of its customers, while the rest switch to Dude. If in 2003, Dude had ${1/6}^{th}$ of the market and Imac had ${5/6}^{th}$ of the market, what will be the share of Dude computers when the market becomes stable?
Solution:
Since we want when the market is stable, the market share should not change from year to year. Let $D$ and $M$ denote the market of Dude and Imac, respectively. Thus we have $$\begin{cases} D_n = {1\over5}D + {2\over3}M\\ M_n= {4\over5}D + {1\over3}M\end{cases}\Rightarrow \begin{bmatrix}D_n\\ M_n \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3}\\ {4\over5}& {1\over3} \end{bmatrix}\cdot \begin{bmatrix}D\\ M\end{bmatrix}$$ $D_n = D$ and $M_n=M$ eventually. That is $$\begin{cases}{4\over5}D - {2\over3} M=0 \\ D+M=1\end{cases}\Rightarrow\begin{cases}D = {5\over11}\\ M= {6\over11} \end{cases}$$ Hence the final market share of Dude will be $\displaystyle{5\over11}$.
6. Three kids - Jim, Corey and David receive an inheritance of 2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey's trust is three times that of David's because Corey made an A in Dr. Kaw's class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6%, 8%, 11%, respectively. The total interest of all the three trusts combined at the end of the first year is 190,740.57. The equations to find the trust money of Jim (J), Corey (C) and David (D) in a matrix form is ( ).
Solution:
From the given conditions, we have $$\begin{cases}J + C +D =2253453\\ C=3D\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{cases}J + C +D =2253453\\ C-3D = 0\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& -3\\ 0.06& 0.08& 0.11 \end{bmatrix}\cdot \begin{bmatrix}J\\ C\\ D \end{bmatrix} = \begin{bmatrix}2253453\\ 0\\ 190740.57 \end{bmatrix}$$
7. Which of the following matrices are strictly diagonally dominant? $$A = \begin{bmatrix}15 &6 &7\\ 2 &-4 &2\\ 3& 2 &6 \end{bmatrix},\ B = \begin{bmatrix}5 &6 &7\\ 2 &-4 &2\\ 3& 2 &-5 \end{bmatrix},\ C = \begin{bmatrix}5&3 &2\\ 6 &-8 &2\\ 7& -5 &12 \end{bmatrix}. $$
Solution:
For $A$, $$\begin{cases}|a_{11}|=15 > |a_{12}| + |a_{13}| = 13\\ |a_{22}| = 4 = |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 > |a_{31}| + |a_{32}| = 5 \end{cases}$$ So it is strictly diagonal dominant. For $B$, $$|b_{11}| = 5 < |b_{12}| + |b_{13}| = 13$$ So it is not strictly diagonal dominant. For $C$, $$\begin{cases}|c_{11}|=5 = |c_{12}| + |c_{13}| = 5\\ |c_{22}| = 8 = |c_{21}| + |c_{23}| = 8\\ |c_{33}| = 12 = |c_{31}| + |c_{32}| = 12 \end{cases}$$ So it is not strictly diagonal dominant.
A.Kaw矩阵代数初步学习笔记 1. Introduction的更多相关文章
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- BASE64 编码和解码
依赖jar: import org.apache.commons.codec.binary.Base64; BASE64和其他相似的编码算法通常用于转换二进制数据为文本数据,其目的是为了简化存储或传输 ...
- 求最长回文子串 - leetcode 5. Longest Palindromic Substring
写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了.... 前后切了一百零几道leetcode的题(sol ...
- 【转】java.util.ResourceBundle使用详解
原文链接:http://lavasoft.blog.51cto.com/62575/184605/ 人家写的太好了,条理清晰,表达准确. 一.认识国际化资源文件 这个类提供软件国际化的捷径.通 ...
- /var/spool/clientmqueue 下生成太多文件处理
问题现象: linux操作系统中的/var/spool/clientmqueue/目录下存在大量文件. 原因分析: 系统中有用户开启了cron,而cron中执行的程序有输出内容,输出内容会以邮件形式发 ...
- c/c++模板的定义和实现分开的问题及其解决方案
注意c/c++模板的定义和实现- - 定义一个类一般都是在头文件中进行类声明,在cpp文件中实现,但使用模板时应注意目前的C ...
- wsdl说明书
WSDL文档的结构实例解析 <?xml version="1.0" encoding="UTF-8"?> <definitions xmlns ...
- Java--笔记(1)
1.Swing 是在AWT的基础上构建的一套新的图形界面系统,它提供了AWT 所能够提供的所有功能,并且用纯粹的Java代码对AWT 的功能进行了大幅度的扩充.AWT 是基于本地方法的C/C++程序, ...
- Jenkins_多项目构建(二):使用Maven聚集关系
一.假设有四个Maven项目 1.soa-dub-parent:父项目 1 2 3 4 5 <modules> <module>../soa-dub-f ...
- 【BZOJ 1758】【WC 2010】重建计划 分数规划+点分治+单调队列
一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的 ...
- 51nod 1040最大公约数和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...