“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第1章课程讲义下载(PDF)

Summary

  • Matrix

    A matrix is a rectangular array of elements. Matrix $A$ is denoted by $$A = \begin{bmatrix}a_{11} & \cdots & a_{1n}\\ \vdots&\vdots&\vdots \\ a_{m1}& \cdots & a_{mn} \end{bmatrix}$$
  • Vector

    A vector is a matrix that has only one row or one column. For example, $[1, 2, 3]$ is a row vector of dimension 3, and $\begin{bmatrix}1 \\ 2 \\ 3 \end{bmatrix}$ is a column vector of dimension 3.
  • Equal matrices

    Two matrices $[A]$ and $[B]$ are equal if the size of $[A]$ and $[B]$ is the same, that is, the number of rows and columns of $[A]$ are same as that of $[B]$. And $a_{ij}=b_{ij}$ for all $i$ and $j$.
  • Zero matrix

    A matrix whose all entries are zero is called a zero matrix, that is, $a_{ij}=0$ for all $i$ and $j$. For example, $$A = \begin{bmatrix}0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}$$
  • Submatrix

    If some rows or/and columns of a matrix $[A]$ are deleted (no rows or columns may be deleted), the remaining matrix is called a submatrix of $[A]$. For example, some of the submatrix of $\begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}$ are $$[1],\ [1, 2],\ \begin{bmatrix}1\\3\\5\end{bmatrix},\ \begin{bmatrix} 1 & 2\\3 & 4 \end{bmatrix},\ \begin{bmatrix} 1 & 2\\5 & 6 \end{bmatrix},\ \begin{bmatrix}1 & 2 \\ 3 & 4\\ 5 & 6 \end{bmatrix}.$$
  • Square matrix

    If the number of rows of a matrix is equal to the number of columns of a matrix, then the matrix is called a square matrix. For example, $$A = \begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}$$
  • Diagonal matrix

    A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, only the diagonal entries of the square matrix can be non-zero, $a_{ij} = 0$ for $i\neq j$. For example, $$A=\begin{bmatrix}1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 5 \end{bmatrix}$$
  • Identity matrix

    A diagonal matrix with all diagonal elements equal to 1 is called an identity matrix, that is, $a_{ij}=0$, $i\neq j$ for all $i$, $j$ and $a_{ii}=1$ for all $i$. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$
  • Upper triangular matrix

    A $n\times n$ matrix for which $a_{ij} = 0$, $i > j$ for all $i$, $j$ is called an upper triangular matrix. That is, all the elements below the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 3\\ 0 & 5 & 6\\ 0 & 0 & 9 \end{bmatrix}$$
  • Lower triangular matrix

    A $n\times n$ matrix for which $a_{ij} = 0$, $j > i$ for all $i$, $j$ is called a lower triangular matrix. That is, all the elements above the diagonal entries are zeros. For example, $$A = \begin{bmatrix}1 & 0 & 0\\ 4 & 5 & 0\\ 0 & 8 & 9 \end{bmatrix}$$
  • Tridiagonal matrix

    A tridiagonal matrix is a square matrix in which all elements not on the following are zero: the major diagonal, the diagonal above the major diagonal, and the diagonal below the major diagonal. For example, $$A = \begin{bmatrix}1 & 2 & 0 & 0\\ 4 & 5 & 6 & 0\\ 0 & 0 & 7 & 8\\ 0& 0& -1& 2 \end{bmatrix}$$ Note that a non-square matrix also has diagonal entries. For an $m\times n$ matrix, the diagonal entries are $a_{11}$, $\cdots$, $a_{kk}$ where $k=\min\{m, n\}$. For example, $$A = \begin{bmatrix}1& 2\\ 3& 4 \\ 5& 6\end{bmatrix}$$ the diagonal elements are $a_{11}=1$ and $a_{22}=4$.
  • Diagonally dominant matrix

    An $n\times n$ square matrix $[A]$ is a diagonal dominant matrix of $$|a_{ii}|\geq \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for $i = 1, \cdots, n$ and $$|a_{ii}| > \sum_{j=1,\ i\neq j}^{n}|a_{ij}|$$ for at least one $i$. That is, for each row, the absolute value of the diagonal element is greater than or equal to the sum of the absolute values of the rest of the elements of that row, and that the inequality is strictly greater than for at least one row. For example, $$A = \begin{bmatrix}15& 6& 7\\ 2& -4& -2\\ 3& 2& 6 \end{bmatrix}$$ is a diagonal dominant matrix since $$\begin{cases}|a_{11}| = 15 \geq |a_{12}| + |a_{13}| =13\\ |a_{22}|= 4 \geq |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 \geq |a_{31}| + |a_{32}| = 5 \end{cases}$$ and for at least one row, that is row 1 and row 3 in this case, the inequality is a strictly greater than inequality.

Selected Problems

1. Given $$A=\begin{bmatrix}6& 2& 3& 9\\ 0& 1& 2& 3\\ 0& 0& 4& 5\\ 0& 0& 0& 6 \end{bmatrix}$$ then $[A]$ is a ( ) matrix.

Solution:

This is an upper triangular matrix.

2. A square matrix $[A]$ is lower triangular if ( ).

Solution:

Lower triangular matrix: $a_{ij} = 0$ for $j > i$.

3. Given $$A = \begin{bmatrix} 12.3& -12.3& 20.3\\ 11.3& -10.3& -11.3\\ 10.3& -11.3& -12.3\end{bmatrix},\ B = \begin{bmatrix} 2& 4\\ -5& 6\\ 11& -20\end{bmatrix}$$ then if $[C] = [A]\cdot[B]$, then $c_{31}= ( )$.

Solution:

$$c_{31} = \begin{bmatrix}10.3 & -11.3 &-12.3\end{bmatrix}\cdot \begin{bmatrix}2\\ -5\\ 11 \end{bmatrix}$$ $$= 10.3\times2 + (-11.3)\times(-5) + (-12.3)\times11= -58.2$$

4. The following system of equations has ( ) solutions. $$\begin{cases}x + y =2\\ 6x + 6y=12 \end{cases}$$

Solution:

$x=2-y$ where $y$ is arbitrary. Thus it has infinite solutions.

5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, Dude keeps ${1/5}^{th}$ of its customers, while the rest switch to Imac. Each year, Imac keeps ${1/3}^{rd}$ of its customers, while the rest switch to Dude. If in 2003, Dude had ${1/6}^{th}$ of the market and Imac had ${5/6}^{th}$ of the market, what will be the share of Dude computers when the market becomes stable?

Solution:

Since we want when the market is stable, the market share should not change from year to year. Let $D$ and $M$ denote the market of Dude and Imac, respectively. Thus we have $$\begin{cases} D_n = {1\over5}D + {2\over3}M\\ M_n= {4\over5}D + {1\over3}M\end{cases}\Rightarrow \begin{bmatrix}D_n\\ M_n \end{bmatrix} = \begin{bmatrix}{1\over5} & {2\over3}\\ {4\over5}& {1\over3} \end{bmatrix}\cdot \begin{bmatrix}D\\ M\end{bmatrix}$$ $D_n = D$ and $M_n=M$ eventually. That is $$\begin{cases}{4\over5}D - {2\over3} M=0 \\ D+M=1\end{cases}\Rightarrow\begin{cases}D = {5\over11}\\ M= {6\over11} \end{cases}$$ Hence the final market share of Dude will be $\displaystyle{5\over11}$.

6. Three kids - Jim, Corey and David receive an inheritance of 2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey's trust is three times that of David's because Corey made an A in Dr. Kaw's class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6%, 8%, 11%, respectively. The total interest of all the three trusts combined at the end of the first year is 190,740.57. The equations to find the trust money of Jim (J), Corey (C) and David (D) in a matrix form is ( ).

Solution:

From the given conditions, we have $$\begin{cases}J + C +D =2253453\\ C=3D\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{cases}J + C +D =2253453\\ C-3D = 0\\ 0.06J + 0.08C + 0.11D = 190740.57\end{cases}$$ $$\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& -3\\ 0.06& 0.08& 0.11 \end{bmatrix}\cdot \begin{bmatrix}J\\ C\\ D \end{bmatrix} = \begin{bmatrix}2253453\\ 0\\ 190740.57 \end{bmatrix}$$

7. Which of the following matrices are strictly diagonally dominant? $$A = \begin{bmatrix}15 &6 &7\\ 2 &-4 &2\\ 3& 2 &6 \end{bmatrix},\ B = \begin{bmatrix}5 &6 &7\\ 2 &-4 &2\\ 3& 2 &-5 \end{bmatrix},\ C = \begin{bmatrix}5&3 &2\\ 6 &-8 &2\\ 7& -5 &12 \end{bmatrix}. $$

Solution:

For $A$, $$\begin{cases}|a_{11}|=15 > |a_{12}| + |a_{13}| = 13\\ |a_{22}| = 4 = |a_{21}| + |a_{23}| = 4\\ |a_{33}| = 6 > |a_{31}| + |a_{32}| = 5 \end{cases}$$ So it is strictly diagonal dominant. For $B$, $$|b_{11}| = 5 < |b_{12}| + |b_{13}| = 13$$ So it is not strictly diagonal dominant. For $C$, $$\begin{cases}|c_{11}|=5 = |c_{12}| + |c_{13}| = 5\\ |c_{22}| = 8 = |c_{21}| + |c_{23}| = 8\\ |c_{33}| = 12 = |c_{31}| + |c_{32}| = 12 \end{cases}$$ So it is not strictly diagonal dominant.

A.Kaw矩阵代数初步学习笔记 1. Introduction的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. datahub

    https://help.aliyun.com/document_detail/27854.html

  2. 【跟着子迟品underscore】从用 `void 0` 代替 `undefined` 说起

    Why underscore 最近开始看 underscore源码,并将 underscore源码解读 放在了我的 2016计划 中. 阅读一些著名框架类库的源码,就好像和一个个大师对话,你会学到很多 ...

  3. 关于.Net的面试遐想

    概述 这几天更新相关的面试题目,主是要针对有4年或以上经验的面试者,总体来说,发现面试人员的答题效果和预期相差比较大,我也在想是不是我出的题目偏离现实,但我更愿意相信,是我们一些.Net开发者在工作中 ...

  4. DataGridView 绑定List集合后实现自定义排序

    这里只贴主要代码,dataList是已添加数据的全局变量,绑定数据源 datagridview1.DataSource = dataList,以下是核心代码. 实现点击列表头实现自定义排序 priva ...

  5. CSS Bug

    父子标签间用margin的问题,表现在有时除IE(6/7)外的浏览器子标签margin转移到了父标签上,IE6&7下没有转移.测试代码: <body> <style type ...

  6. hihocoder1241 Best Route in a Grid

    题目链接:hihocoder 1241 题意: n*n的格阵,每个方格内有一个数字.蚂蚁从左上角走到右下角,数字是零的方格不能走,只能向右向下走.蚂蚁走的路径上全部方格的的乘积为s,要使s低位0的个数 ...

  7. jq mobile非ajax加载,ready执行两次

    jqm只有通过ajax加载的页面才只执行一次ready(正常情况) 页面刷新(同非ajax加载的页面)都会执行两次ready,包括pageinit和pageshow事件也是如此. 两种避免的方法是: ...

  8. android开发------Activity生命周期

    这几天工作比较忙,基本没有什么时间更新播客了. 趁着今晚有点时间,我们来简单说一下什么是Activity生命周期和它们各阶段的特征 什么是生命周期 在还没有接触android开发的时候,听到有人说Ac ...

  9. JS实时定位

    <!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...

  10. Shell脚本_备份/etc数据

    vim backup_etc.sh chmod 755 backup_etc.sh 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 ...