不多说,直接上代码。

Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat。

Hadoop 自身提供的几种小文件合并机制

Hadoop HAR

将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-reduce进行操作,打包后的文件由索引和存储两大部分组成

        缺点:一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包。
 
 

SequeuesFile

Sequence file由一系列的二进制key/value组成,如果key为小文件名,value为文件内容,则可以将大批小文件合并成一个大文件。

        优缺点:对小文件的存取都比较自由,也不限制用户和文件的多少,但是该方法不能使用append方法,所以适合一次性写入大量小文件的场景。
 
 

CombineFileInputFormat

CombineFileInputFormat是一种新的inputformat,用于将多个文件合并成一个单独的split作为输入,而不是通常使用一个文件作为输入。另外,它会考虑数据的存储位置。

目前很多公司采用的方法就是在数据进入 Hadoop 的 HDFS 系统之前进行合并(也是本博文这方法),一般效果较上述三种方法明显。

 代码

package zhouls.bigdata.myMapReduce.MergeSmallFiles;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileUtil;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IOUtils;
/**
* function 合并小文件至 HDFS
*
*
*/
public class MergeSmallFilesToHDFS {
private static FileSystem fs = null;
private static FileSystem local = null;
/**
* @function main
* @param args
* @throws IOException
* @throws URISyntaxException
*/
public static void main(String[] args) throws IOException,
URISyntaxException {
list();
}

/**
*
* @throws IOException
* @throws URISyntaxException
*/
public static void list() throws IOException, URISyntaxException {
// 读取hadoop文件系统的配置
Configuration conf = new Configuration();
//文件系统访问接口
URI uri = new URI("hdfs://HadoopMaster:9000");
//创建FileSystem对象aa
fs = FileSystem.get(uri, conf);
// 获得本地文件系统
local = FileSystem.getLocal(conf);
//过滤目录下的 svn 文件
FileStatus[] dirstatus = local.globStatus(new Path("./data/mergeSmallFiles/*"),new RegexExcludePathFilter("^.*svn$"));
//获取73目录下的所有文件路径
Path[] dirs = FileUtil.stat2Paths(dirstatus);
FSDataOutputStream out = null;
FSDataInputStream in = null;
for (Path dir : dirs) {
String fileName = dir.getName().replace("-", "");//文件名称
//只接受日期目录下的.txt文件a
FileStatus[] localStatus = local.globStatus(new Path(dir+"/*"),new RegexAcceptPathFilter("^.*txt$"));
// 获得日期目录下的所有文件
Path[] listedPaths = FileUtil.stat2Paths(localStatus);
//输出路径
Path block = new Path("hdfs://HadoopMaster:9000/tv/"+ fileName + ".txt");
// 打开输出流
out = fs.create(block);
for (Path p : listedPaths) {
in = local.open(p);// 打开输入流
IOUtils.copyBytes(in, out, 4096, false); // 复制数据
// 关闭输入流
in.close();
}
if (out != null) {
// 关闭输出流a
out.close();
}
}

}

/**
*
* @function 过滤 regex 格式的文件
*
*/
public static class RegexExcludePathFilter implements PathFilter {
private final String regex;

public RegexExcludePathFilter(String regex) {
this.regex = regex;
}

@Override
public boolean accept(Path path) {
// TODO Auto-generated method stub
boolean flag = path.toString().matches(regex);
return !flag;
}

}

/**
*
* @function 接受 regex 格式的文件
*
*/
public static class RegexAcceptPathFilter implements PathFilter {
private final String regex;

public RegexAcceptPathFilter(String regex) {
this.regex = regex;
}

@Override
public boolean accept(Path path) {
// TODO Auto-generated method stub
boolean flag = path.toString().matches(regex);
return flag;
}

}
}

Hadoop MapReduce编程 API入门系列之小文件合并(二十九)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之分区和合并(十四)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.Star; import java.io.IOException; import org.apache ...

  2. Hadoop MapReduce编程 API入门系列之Crime数据分析(二十五)(未完)

    不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先 ...

  3. Hadoop MapReduce编程 API入门系列之网页排序(二十八)

    不多说,直接上代码. Map output bytes=247 Map output materialized bytes=275 Input split bytes=139 Combine inpu ...

  4. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  5. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  6. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  7. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  8. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

  9. Hadoop MapReduce编程 API入门系列之自定义多种输入格式数据类型和排序多种输出格式(十一)

    推荐 MapReduce分析明星微博数据 http://git.oschina.net/ljc520313/codeexample/tree/master/bigdata/hadoop/mapredu ...

随机推荐

  1. Eclipse安装easyShell插件

    easyshell是一个用于快速打开文件目录.复制文件路径.cmd打开等等的eclipse插件工具. Eclipse下安装easyshell: 1.打开Eclipse商店 2.输入easyShell点 ...

  2. HDU 2254

    http://acm.hdu.edu.cn/showproblem.php?pid=2254 矩阵乘法两个经典问题的综合题,还要离散化和处理边界,好题啊好题 题意容易理解错,每一天是独立的,所以根据加 ...

  3. js 获取浏览器可视窗口大小,滚动条高度

    // 获取窗口宽度 if (window.innerWidth) winWidth = window.innerWidth; else if ((document.body) && ( ...

  4. YUSE_DOWN-批下载

    *&---------------------------------------------------------------------**& Report YTST_CX_DO ...

  5. .jre下的lib和jdk下的lib的区别

    jre是JDK的一个子集.提供一个运行环境.JDK的lib目录是给JDK用的,例如JDK下有一些工具,可能要用该目录中的文件.例如,编译器等.JRE的lib目录是为JVM,运行时候用的.包括所有的标准 ...

  6. 如何在JBoss WildFly 8 自定义log4j日志

    最近在 JBoss WildFly 8 下部署 Web应用,自定义的 log4j 日志不工作.console下无日志输出,用System.out.println都不输出内容到console. 原因是J ...

  7. RobotFramwork + Appium+ Andriod 环境搭建

    RF+Appium+Android环境搭建教程 - 1.RF安装 一.适用操作系统 Win7 旗舰版Sp1 32位操作系统 RF环境搭建,请参考文档<RobotFramwork安装指南> ...

  8. VS中Debug和Realease、及静态库和动态库的区别整理

    一.Debug和Realease区别产生的原因 Debug 通常称为调试版本,它包含调试信息,并且不作任何优化,便于程序员调试程序.Release 称为发布版本,它往往是进行了各种优化,使得程序在代码 ...

  9. IntelliJ 2016.02设置maven 阿里云加速

    修改maven 的setting.xml <mirror> <id>nexus-aliyun</id> <mirrorOf>*</mirrorOf ...

  10. springfox.documentation.service.ApiInfo配置示例

    Java Code Examples for springfox.documentation.service.ApiInfo The following are top voted examples ...