3144: [Hnoi2013]切糕

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1261  Solved: 700
[Submit][Status][Discuss]

Description

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

Source

Solution

把一个立体几何的东西换成平面几何,想成一个矩阵

每个矩阵有一些值要取,而且要满足相邻的相差不到D

所以考虑分层建图,按高度分层,然后最小割即可

感觉是个比较经典的模型?

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-')f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 50*50*50
#define maxm 1000100
int p,q,r,d,ans;
int val[][][];
struct Edgenode{int to,next,cap;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w)
{cnt++;edge[cnt].to=v;edge[cnt].cap=w;edge[cnt].next=head[u];head[u]=cnt;}
void insert(int u,int v,int w)
{add(u,v,w);add(v,u,);}
//
int dis[maxn],que[maxn<<],cur[maxn],S,T;
bool bfs()
{
for (int i=S; i<=T; i++) dis[i]=-;
que[]=S; dis[S]=; int he=,ta=;
while (he<ta)
{
int now=que[he++];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,que[ta++]=edge[i].to;
}
return dis[T]!=-;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=;
for (int i=cur[loc]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[loc]+)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w;
used+=w; if (edge[i].cap) cur[loc]=i;
if (used==low) return low;
}
if (!used) dis[loc]=-;
return used;
}
#define inf 0x7fffffff
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}//
int loc(int x,int y,int z)
{if (z==) return ;return (z-)*p*q+(x-)*q+y;}
void make()
{
S=,T=p*q*r+;
for (int i=; i<=p; i++)
for (int j=; j<=q; j++)
{
for (int k=; k<=r; k++)
{
insert(loc(i,j,k-),loc(i,j,k),val[i][j][k]);
if(k>d)
{
if (i->=) insert(loc(i,j,k),loc(i-,j,k-d),inf);
if (i+<=p) insert(loc(i,j,k),loc(i+,j,k-d),inf);
if (j->=) insert(loc(i,j,k),loc(i,j-,k-d),inf);
if (j+<=q) insert(loc(i,j,k),loc(i,j+,k-d),inf);
} }
insert(loc(i,j,r),T,inf);
}
}
int main()
{
p=read(),q=read(),r=read(); d=read();
for (int i=; i<=r; i++)
for (int j=; j<=p; j++)
for (int k=; k<=q; k++)
val[j][k][i]=read();
make();
ans=dinic();
printf("%d\n",ans);
return ;
}

吐槽自己代码丑,我认了....

话说数学和语文学的真不好....刚看题居然没看懂......

【BZOJ-3144】切糕 最小割-最大流的更多相关文章

  1. BZOJ 3144 切糕 最小割

    题意: 一个矩阵,每个格子分配一个数,不同的数字,代价不同,要求相邻格子数字差小等于d 求最小代价. 分析: 我猜肯定有人看题目就想到最小割了,然后一看题面理科否决了自己的这个想法…… 没错,就是最小 ...

  2. bzoj 3144 切糕 —— 最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 每个点拆成 R 个,连成一条链,边上是权值,割掉代表选这一层: 然后每个点的第 t 层 ...

  3. bzoj3144 [HNOI2013]切糕(最小割)

    bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...

  4. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  5. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  6. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  7. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  8. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

  9. HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)

    题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory L ...

随机推荐

  1. 045医疗项目-模块四:采购单模块—采购单提交(Dao,Service,Action三层)

    我们之前做的就是采购单的编辑,在采购单里面添加了药品,然后我们这篇文章要做的就是说提交这个采购单. 当我们创建完成采购单,确定采购单不再修改,需要提交采购单,由监管单位进行审核. 我们在提交这个采购单 ...

  2. 阿里云Centos 6.3 64位 安全加固版 升级 Php 中的 Curl 7.19 到 7.35

    *注意是使用阿里云一键安装包的升级,升级前快照备份哟,小伙伴! 1.SSH远程到root下下载新版本curl 网址地址:http://curl.haxx.se/download.html 完成curl ...

  3. Cordova - 常用的插件汇总(附插件的安装、查询、更新、删除等命令)

    Hybrid应用比web应用强大之处在于可以使运行在容器中的web内容访问 native APIs.Cordova 提供了许多插件用于调用移动设备上的API. 一,插件相关常用命令   1,查看所有已 ...

  4. (原创)解决远程桌面连接远程应用时,出现 '应用程序错误: '0x7c931780'指令引用的 '0x89abcdef' 内存。该内存不能为 'read'"

    公司的部分应用为cs结构,没有web版的,这些应用的外部访问基本都是通过使用windows server 2008 r2的远程桌面服务来实现的. 个人感觉微软远程桌面服务问题很多,今天有同事使用Rem ...

  5. 帆软FineReport如何使用程序数据集

    大多数情况下,FineReport直接在设计器里使用“数据集查询”,直接写SQL就能满足报表要求,但对于一些复杂的报表,有时候SQL处理并不方便,这时可以把查询结果在应用层做一些预处理后,再传递给报表 ...

  6. 浅谈设计模式--装饰者模式(Decorator Pattern)

    挖了设计模式这个坑,得继续填上.继续设计模式之路.这次讨论的模式,是 装饰者模式(Decorator Pattern) 装饰者模式,有时也叫包装者(Wrapper),主要用于静态或动态地为一个特定的对 ...

  7. 利用performance属性查看网页性能

    一般我们可以通过浏览器的调试工具-网络面板,或者代理工具查看网页加载过程中的各个阶段的耗时.而利用window.performance属性则可以获得更为精确的原始数据,以毫秒为单位,精确到微秒. pe ...

  8. 【转】CSS Sprites教程大全(使用方法、工具介绍)

    什么是CSS Sprite CSS Sprite 又叫CSS精灵,是目前大型网站中经常运用的图片处理方式.它的原理很简单,将网站上零散的小图片(或图标)整合在一张大图上,再用CSS中“backgrou ...

  9. 让你彻底理解 “==”与 Equals

    相信很多朋友在面对,对象判等时经常会犹豫是用“==”还是Equals呢?有时候发现两者得到的结果相同,但有时候有不同, 究竟在什么情况下"==" 会相等,什么情况下Equals会不 ...

  10. 又发现一个msdn的坑

    一个类型里面有两个属性仅仅是大小写区别,可是IIS不区分大小写,问:如何才能查看两个属性里面的文档那? http://msdn.microsoft.com/en-us/library/microsof ...