%第一列为 size of House(feet^2),第二列为 number of bedroom,第三列为 price of House
1 ,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
 1 %  Exercise 1: Linear regression with multiple variables

%% Initialization %% ================ Part 1: Feature Normalization ================ %% Clear and Close Figures
clear ; close all; clc fprintf('Loading data ...\n'); %% Load Data
data = load('ex1data2.txt');
X = data(:, :);
y = data(:, );
m = length(y); % Print out some data points
fprintf('First 10 examples from the dataset: \n');
fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(:,:) y(:,:)]'); fprintf('Program paused. Press enter to continue.\n');
pause; % Scale features and set them to zero mean
fprintf('Normalizing Features ...\n'); [X, mu, sigma] = featureNormalize(X);
 1 %featureNormalize(X)函数实现
function [X_norm, mu, sigma] = featureNormalize(X)
X_norm = X; % X是需要正规化的矩阵
mu = zeros(, size(X, )); % 生成 1x3 的全0矩阵
sigma = zeros(, size(X, )); % 同上 % Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful. % std,均方差,std(X,,)求列向量方差,std(X,,)求行向量方差。 mu = mean(X, ); %求每列的均值--即一种特征的所有样本的均值
sigma = std(X); %默认同std(X,,)求列向量方差
%fprintf('Debug....\n'); disp(sigma);
i = ;
len = size(X,); %行数
while i <= len,
%对每列的所有行上的样本进行normalization(归一化):(每列的所有行-该列均值)/(该列的标准差)
X_norm(:,i) = (X(:,i) - mu(,i)) / (sigma(,i));
i = i + ;
end
 1 % Add intercept term to X
2 X = [ones(m, 1) X]; %% ================ Part : Gradient Descent ================ % Instructions: We have provided you with the following starter
% code that runs gradient descent with a particular
% learning rate (alpha).
%
% Your task is to first make sure that your functions -
% computeCost and gradientDescent already work with
% this starter code and support multiple variables.
%
% After that, try running gradient descent with
% different values of alpha and see which one gives
% you the best result.
%
% Finally, you should complete the code at the end
% to predict the price of a sq-ft, br house.
%
% Hint: By using the 'hold on' command, you can plot multiple
% graphs on the same figure.
%
% Hint: At prediction, make sure you do the same feature normalization.
% fprintf('Running gradient descent ...\n'); % Choose some alpha value
alpha = 0.03; % learning rate - 可尝试0.,0.03,0.1,0.3...
num_iters = ; % 迭代次数 % Init Theta and Run Gradient Descent
theta = zeros(, ); % 3x1的全零矩阵
[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
% gradientDescentMulti()函数实现
1 function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)

% Initialize some useful values
m = length(y); % number of training examples
feature_number = size(X,); % number of feature J_history = zeros(num_iters, );
temp = zeros(feature_number, ); for iter = : num_iters
predictions = X * theta;
sqrError = (predictions - y);
for i = : feature_number % Simultneously update theta(i) (同时更新)
temp(i) = theta(i) - (alpha / m) * sum(sqrError .* X(:,i));
end for j = : feature_number
theta(j) = temp(j);
end % Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
% % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
36 % disp(J_history(iter)); end end
 1 % Plot the convergence graph
figure;
plot(:numel(J_history), J_history, '-b', 'LineWidth', ); % '-b'--用蓝线绘制图像,线宽为2
xlabel('Number of iterations');
ylabel('Cost J'); % Display gradient descent's result
fprintf('Theta computed from gradient descent: \n');
fprintf(' %f \n', theta);
fprintf('\n');
Tip:
To compare how dierent learning learning
rates aect convergence, it's helpful to plot J for several learning rates
on the same gure. In Octave/MATLAB, this can be done by perform-
ing gradi
ent descent multiple times with a `hold on' command between
plots. Concretely, if you've tried three dierent values of alpha (you should
probably try more values than this) and stored the costs in J1, J2 and
J3, you can use the following commands to plot them on the same gure:
plot(1:50, J1(1
:50), `b');
hold on;
plot(1:50, J2(1:50), `r');
plot(1:50, J3(1:50), `k');
The nal arguments `b', `r', and `k' specify dierent colors for the
plots.
 1 % 上面的Tip实现如: 可以添加本段代码进行比较 不同的learning rate
2 figure;
3 plot(1:100, J_history(1:100), '-b', 'LineWidth', 2);
4 xlabel('Number of iterations');
5 ylabel('Cost J');
6
7 % Compare learning rate
8 hold on;
9 alpha = 0.03;
10 theta = zeros(3, 1);
11 [theta, J_history1] = gradientDescentMulti(X, y, theta, alpha, num_iters);
12 plot(1:100, J_history1(1:100), 'r', 'LineWidth', 2);
13
14 hold on;
15 alpha = 0.1;
16 theta = zeros(3, 1);
17 [theta, J_history2] = gradientDescentMulti(X, y, theta, alpha, num_iters);
18 plot(1:100, J_history2(1:100), 'g', 'LineWidth', 2);
 1 % 利用梯度下降算法预测新值
price = [, X(:)] * theta; %利用矩阵乘法--预测多特征下的price % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using gradient descent):\n $%f\n'], price); fprintf('Program paused. Press enter to continue.\n');
pause;
 1 %% ================ Part 3: Normal Equations ================
2 %利用正规方程预测新值(Normal Equation)
fprintf('Solving with normal equations...\n'); %% Load Data
data = csvread('ex1data2.txt');
X = data(:, :);
y = data(:, );
m = length(y); % Add intercept term to X
X = [ones(m, ) X]; % Calculate the parameters from the normal equation
theta = normalEqn(X, y);
 % normalEquation的实现
1 function [theta] = normalEqn(X, y)

theta = zeros(size(X, ), ); % Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta. theta = pinv(X' * X) * X' * y; end
 1 % Display normal equation's result
fprintf('Theta computed from the normal equations: \n');
fprintf(' %f \n', theta);
fprintf('\n'); % Estimate the price of a sq-ft, br house price = ;
price = [, X(:)] * theta; %利用正规方程预测新值 fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
'(using normal equations):\n $%f\n'], price);

Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)的更多相关文章

  1. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  2. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  3. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  4. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  5. ML:多变量代价函数和梯度下降(Linear Regression with Multiple Variables)

    代价函数cost function 公式: 其中,变量θ(Rn+1或者R(n+1)*1) 向量化: Octave实现: function J = computeCost(X, y, theta) %C ...

  6. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

  7. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

  8. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

  9. #Week3 Linear Regression with Multiple Variables

    一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训 ...

随机推荐

  1. Swift2.1 语法指南——泛型

    原档:https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programmi ...

  2. JavaScript与DOM

    文档对象模型Document Object Model DOM(Document Object Model,文档对象模型)是一个通过和JavaScript进行内容交互的API.Javascript和D ...

  3. 信号屏蔽的切换的理解sigsuspend

    #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <unistd.h&g ...

  4. html5 图片转为base64格式异步上传

    因为有这个需求(移动端),所以就研究了一下,发现还挺不错的.这个主要是用了html5的API,不需要其他的JS插件,不过只有支持html5的浏览器才行,就现在而言应该大部份都支持的.<!DOCT ...

  5. 为在韶大痛苦而不能用手机、Pad等上网的同志造福!

    目标:共享咱们校园网,让更多的人或更多的设备冲浪去! 基本条件:一台带无线功能的笔记本,一个可以上网的账号与pwd,最好为Windows7以上的操作系统,如果是XP,则需要打个.net framewo ...

  6. [Leetcode19] Remove Nth Node From End of List

    视频讲解  http://v.youku.com/v_show/id_XMTY1MTMzNjAyNA==.html (1)定义两个指针 ListNode fast = head; ListNode s ...

  7. OOP感想

    OOP是面向对象编程(Object Oriented Programming).集于一身,最终目的是各司其职,让每个职责的只关注自己那块,其他的不管丢给下一个人.比如说,一个页面,对于客户,只要能看到 ...

  8. [转载]JavaEE学习篇之——JQuery技术详解

    原文链接:http://blog.csdn.net/jiangwei0910410003/article/details/32102187 1.简介2.工具3.jQuery对象 1.DOM对象转化成j ...

  9. Android中对Log日志文件的分析[转]

    一,Bug出现了, 需要“干掉”它 bug一听挺吓人的,但是只要你懂了,android里的bug是很好解决的,因为android里提供了LOG机制,具体的底层代码,以后在来分析,只要你会看bug, a ...

  10. java复制文件

    package com.test.tes; import java.io.File; import java.io.FileInputStream; import java.io.FileOutput ...