Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7594   Accepted: 4029

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk(k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source


copy一下MST的性质:
  • (1)切割性质:(各边边权均不相同)一条边是连接图中某非全集非空集的点集合S和其补集中所有的边的最小边,那么这条边就在最小生成树中。
  • 证明:回忆kruscal算法的过程,这条边是连接这两个集合的最小边,那么在枚举到这条边之前,这两个集合一定没有被合并
  • (2)回路性质:(各边边权均不相同)图若有回路,那么回路中的最长边一定不在最小生成树中
  • 证明:回路中至少一条边不在最少生成树中,假设最长边在最小生成树中,那么一定存在一条更小的边替代它。
  • (3)最小瓶颈生成树:使最大边权值尽量小的生成树
  • 最小生成树就是这么一棵树,因为kruscal算法的过程
  • (4)最小瓶颈路:找u到v的一条路径满足最大边权值尽量小
  • 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这条路径
  • 如果只求一次,也可以用spfa稍作变形解决

本题求最苗条的生成树

可以发现对于一个最小边的权值,它对应的MST中的最大边的权值一定是最苗条的

枚举求就可以了

//
// main.cpp
// poj3522slim
//
// Created by Candy on 9/14/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,ans=INF;
struct edge{
int u,v,w;
bool operator<(const edge &rhs)const{return w<rhs.w;}
}e[N*N];
int p[N];
int find(int x){return x==p[x]?x:p[x]=find(p[x]);}
int kruskal(int st){
int ans=INF,cnt=;
for(int i=;i<=n;i++) p[i]=i;
for(int i=st;i<=m;i++){
int u=e[i].u,v=e[i].v;
int x=find(u),y=find(v);
if(x!=y){
ans=e[i].w;
p[x]=y;
if(++cnt==n-) break;
}
}
if(cnt!=n-) return -;
return ans;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
if(n==&&m==) break;
ans=INF;
for(int i=;i<=m;i++){
e[i].u=read();e[i].v=read();e[i].w=read();
}
sort(e+,e++m);
for(int st=;st<=m-n+;st++){
int tmp=kruskal(st);
if(tmp!=-) ans=min(ans,tmp-e[st].w);
}
if(ans!=INF) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}

最小生成树POJ3522 Slim Span[kruskal]的更多相关文章

  1. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  2. POJ3522 Slim Span

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7462   Accepted: 3959 Descrip ...

  3. Uva1395 POJ3522 Slim Span (最小生成树)

    Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...

  4. 【kruscal】【最小生成树】poj3522 Slim Span

    求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  7. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  8. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  9. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. web前端命名规范

    在做web项目的时候,命名的规范是很重要.初学者一般急于求成对命名规范没有概念,觉得花时间这些还不如多看几遍框架.其实在我看来,一个良好的命名习惯是很重要的.下面就来介绍一下我总结的命名规范: (1) ...

  2. SharePoint 2013 WebPart 管理工具分享[开源]

    前言 之前做门户的时候,经常要导入导出WebPart,非常的频繁,然后就需要一个个导出,然后一个个导入,非常繁琐:闲暇之际,就考虑能不能自动化一下,把这个功能写成一个工具,可以方便的管理WebPart ...

  3. Java虚拟机JVM学习03 连接过程:验证、准备、解析

    Java虚拟机JVM学习03 连接过程:验证.准备.解析 类被加载后,就进入连接阶段. 连接就是将已经读入到内存的类的二进制数据合并到虚拟机的运行时环境中去. 连接阶段三个步骤:验证.准备和解析. 类 ...

  4. setTimeout和setInterval

    setTimeout(methodName, interval); //间隔时间单位为毫秒,表示interval毫秒后执行方法methodName setInterval(methodName, in ...

  5. FusionCharts的使用方法(php)

    我们公司一直用这个图表统计, 最近整理了一下相关文档,提供大家学习. 首先可以看看 http://www.cnblogs.com/xuhongfei/archive/2013/04/12/301688 ...

  6. css hover对其包含的元素进行样式设置

    <ul class="icon-down-single-arr-li"> <li> <a href="javascript:void(0)& ...

  7. js:插入节点appendChild insertBefore使用方法

    首先 从定义来理解 这两个方法: appendChild() 方法:可向节点的子节点列表的末尾添加新的子节点.语法:appendChild(newchild) insertBefore() 方法:可在 ...

  8. Javascript 优化项目代码技巧之语言基础(一)

        Javascript的弱类型以及函数作用域等规则使用编写Javascript代码极为容易,但是编写可维护.高质量的代码却变得十分困难,这个系列的文章将总结在项目开发过程中,能够改善代码可读性. ...

  9. ORACLE数据库异步IO介绍

    异步IO概念 Linux 异步 I/O (AIO)是 Linux 内核中提供的一个增强的功能.它是Linux 2.6 版本内核的一个标准特性,当然我们在2.4 版本内核的补丁中也可以找到它.AIO 背 ...

  10. spring filter过滤器

    1.简介 Filter也称之为过滤器,它是Servlet技术中最实用的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态图片文件或静态 ...