最小生成树POJ3522 Slim Span[kruskal]
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 7594 | Accepted: 4029 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk(k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
copy一下MST的性质:
- (1)切割性质:(各边边权均不相同)一条边是连接图中某非全集非空集的点集合S和其补集中所有的边的最小边,那么这条边就在最小生成树中。
- 证明:回忆kruscal算法的过程,这条边是连接这两个集合的最小边,那么在枚举到这条边之前,这两个集合一定没有被合并
- (2)回路性质:(各边边权均不相同)图若有回路,那么回路中的最长边一定不在最小生成树中
- 证明:回路中至少一条边不在最少生成树中,假设最长边在最小生成树中,那么一定存在一条更小的边替代它。
- (3)最小瓶颈生成树:使最大边权值尽量小的生成树
- 最小生成树就是这么一棵树,因为kruscal算法的过程
- (4)最小瓶颈路:找u到v的一条路径满足最大边权值尽量小
- 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这条路径
- 如果只求一次,也可以用spfa稍作变形解决
本题求最苗条的生成树
可以发现对于一个最小边的权值,它对应的MST中的最大边的权值一定是最苗条的
枚举求就可以了
//
// main.cpp
// poj3522slim
//
// Created by Candy on 9/14/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,ans=INF;
struct edge{
int u,v,w;
bool operator<(const edge &rhs)const{return w<rhs.w;}
}e[N*N];
int p[N];
int find(int x){return x==p[x]?x:p[x]=find(p[x]);}
int kruskal(int st){
int ans=INF,cnt=;
for(int i=;i<=n;i++) p[i]=i;
for(int i=st;i<=m;i++){
int u=e[i].u,v=e[i].v;
int x=find(u),y=find(v);
if(x!=y){
ans=e[i].w;
p[x]=y;
if(++cnt==n-) break;
}
}
if(cnt!=n-) return -;
return ans;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
if(n==&&m==) break;
ans=INF;
for(int i=;i<=m;i++){
e[i].u=read();e[i].v=read();e[i].w=read();
}
sort(e+,e++m);
for(int st=;st<=m-n+;st++){
int tmp=kruskal(st);
if(tmp!=-) ans=min(ans,tmp-e[st].w);
}
if(ans!=INF) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}
最小生成树POJ3522 Slim Span[kruskal]的更多相关文章
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- POJ3522 Slim Span
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7462 Accepted: 3959 Descrip ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- 【kruscal】【最小生成树】poj3522 Slim Span
求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- 最小生成树练习2(Kruskal)
两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- Slim Span(Kruskal)
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Subm ...
随机推荐
- Maltego实体分类与Transform
分类 实体类型 描述 Devices (设备类) Device 表示一个设备,如一个手机或相机. Infrastructure (基础结构类) AS 一个互联网自治系统 DNS Name 域名系统 ...
- SharePoint 2010 人员选择器搜索范围的限定
客户AD中用户信息过多,而当前的SharePoint应用中不需要针对所有AD进行筛选,则需要通过STSADM来设置搜索范围: stsadm -o setsiteuseraccountdirectory ...
- [Android]下拉刷新控件RefreshableView的实现
以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/4172483.html 需求:自定义一个ViewGroup,实现 ...
- <转>关于Certificate、Provisioning Profile、App ID的介绍及其之间的关系
转自:http://www.cnblogs.com/cywin888/p/3263027.html 刚接触iOS开发的人难免会对苹果的各种证书.配置文件等不甚了解,可能你按照网上的教程一步一步的成功申 ...
- Android 图片的颜色处理
仿造美图秀秀移动鼠标调整seekbar,调整图片的颜色 项目布局如下: <LinearLayout xmlns:android="http://schemas.android.com/ ...
- iOS 开发之路(使用WKWebView加载Html5) 四
基于Swift 3 . Xcode 8 . iOS 10 下的WKWebView的使用. 首先是WKWebView的基本用法: var wk:WKWebView! var progBar:UIProg ...
- Android中将xml布局文件转化为View树的过程分析(上)
有好几周没写东西了,一方面是因为前几个周末都有些事情,另外也是因为没能找到好的写作方向,或者说有些话题 值得分享.写作,可是自己积累还不够,没办法只好闷头继续研究了.这段时间一边在写代码,一边也在想A ...
- 学习 jsonp
1.起因 js脚本做ajax异步调用的时候,直接请求普通文件存在跨域无权限访问的问题,不管你是静态页面.动态网页.web服务,只要是跨域请求,都无法成功: 如果上句话没明白,我们直接看例子.有两个一模 ...
- MicroStation VBA基础
实习笔记1 2016年8月1日 14:12 Option Explicit 缺省情况下,如果使用一个没有声明的变量,它将继承“Variant”类型.在模块.窗体和类的通用声明区使用“OptionExp ...
- git之一
1.Git是什么Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很小到非常大的项目版本管理.Git 是 ...