最小生成树POJ3522 Slim Span[kruskal]
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 7594 | Accepted: 4029 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk(k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
copy一下MST的性质:
- (1)切割性质:(各边边权均不相同)一条边是连接图中某非全集非空集的点集合S和其补集中所有的边的最小边,那么这条边就在最小生成树中。
- 证明:回忆kruscal算法的过程,这条边是连接这两个集合的最小边,那么在枚举到这条边之前,这两个集合一定没有被合并
- (2)回路性质:(各边边权均不相同)图若有回路,那么回路中的最长边一定不在最小生成树中
- 证明:回路中至少一条边不在最少生成树中,假设最长边在最小生成树中,那么一定存在一条更小的边替代它。
- (3)最小瓶颈生成树:使最大边权值尽量小的生成树
- 最小生成树就是这么一棵树,因为kruscal算法的过程
- (4)最小瓶颈路:找u到v的一条路径满足最大边权值尽量小
- 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这条路径
- 如果只求一次,也可以用spfa稍作变形解决
本题求最苗条的生成树
可以发现对于一个最小边的权值,它对应的MST中的最大边的权值一定是最苗条的
枚举求就可以了
//
// main.cpp
// poj3522slim
//
// Created by Candy on 9/14/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,ans=INF;
struct edge{
int u,v,w;
bool operator<(const edge &rhs)const{return w<rhs.w;}
}e[N*N];
int p[N];
int find(int x){return x==p[x]?x:p[x]=find(p[x]);}
int kruskal(int st){
int ans=INF,cnt=;
for(int i=;i<=n;i++) p[i]=i;
for(int i=st;i<=m;i++){
int u=e[i].u,v=e[i].v;
int x=find(u),y=find(v);
if(x!=y){
ans=e[i].w;
p[x]=y;
if(++cnt==n-) break;
}
}
if(cnt!=n-) return -;
return ans;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
if(n==&&m==) break;
ans=INF;
for(int i=;i<=m;i++){
e[i].u=read();e[i].v=read();e[i].w=read();
}
sort(e+,e++m);
for(int st=;st<=m-n+;st++){
int tmp=kruskal(st);
if(tmp!=-) ans=min(ans,tmp-e[st].w);
}
if(ans!=INF) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}
最小生成树POJ3522 Slim Span[kruskal]的更多相关文章
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- POJ3522 Slim Span
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7462 Accepted: 3959 Descrip ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- 【kruscal】【最小生成树】poj3522 Slim Span
求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- 最小生成树练习2(Kruskal)
两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- Slim Span(Kruskal)
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Subm ...
随机推荐
- Mysql关键字 Mysql保留字列表 Mysql字段名
Mysql保留字列表.吠品整理. 尝试使用一个识别符,例如使用嵌入式MySQL 数据类型或函数名作为表名或列名,例如TIMESTAMP 或GROUP,会造成一个常见问题.允许你这样操作( 例如,ABS ...
- 如何使用代码或脚本启用SharePoint的备用语言
SP的多语言,需要安装语言包,然后手工去sharepoint下启动备用语言,如下图: [网站操作]-[语言设置]: 方法一:采用powershell处理 在很多项目情况下,需要用代码进行备用语言启动. ...
- Android JNI简介
JNI简介 JNI (Java Native Interface),Java的本地接口 JNI是Java众多开发技术中的一门,意在利用本地代码,为Java程序提供 更高效,更灵活的拓展.应用场景包括: ...
- 运算符&,|,^
1.&按位“与”的计算是把两个数字分别写成二进制形式,然后按照每一位进行比较,&计算中,只要有一个是0就算成02.|运算转换成2进制进行比较,两个位只要有一个为1,那么结果就是1,否则 ...
- 【代码笔记】iOS-带索引的tableView
一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...
- 自定义Dialog宽度占满屏幕
一.自定义Dialog继承Dialog public class MyDialog extends Dialog { 二.为Dialog设置样式 在style中建立新样式继承 @android:sty ...
- Android点击空白处,隐藏软键盘
在做登陆或者注册的时候,软键盘经常可能会挡住一些界面.我们需要在输入完成之后隐藏软键盘. 在我们点击空白处或者非EditText的地方来隐藏软键盘. public class HomeActivity ...
- php设计模式 数据对象映射模式
数据对象映射模式,是将对象和数据存储映射起来,对一个对象的操作会映射为对数据存储的操作. 在代码中实现数据对象映射模式,实现一个ORM类,将复杂的sql语句映射成对象属性的操作.对象关系映射(Obje ...
- php设计模式 适配器模式
适配器模式,可以将截然不同的函数接口封装成统一的API: 应用举例,PHP的数据库操作有Mysql.Mysqli.pdo三种,可以用适配器模式统一成一致,类似的场景还有cache适配器,将memcac ...
- C# MVC模式 404 500页面设置方法
<customErrors mode="On" defaultRedirect="Controllers/Action"> <error st ...