Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7594   Accepted: 4029

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk(k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source


copy一下MST的性质:
  • (1)切割性质:(各边边权均不相同)一条边是连接图中某非全集非空集的点集合S和其补集中所有的边的最小边,那么这条边就在最小生成树中。
  • 证明:回忆kruscal算法的过程,这条边是连接这两个集合的最小边,那么在枚举到这条边之前,这两个集合一定没有被合并
  • (2)回路性质:(各边边权均不相同)图若有回路,那么回路中的最长边一定不在最小生成树中
  • 证明:回路中至少一条边不在最少生成树中,假设最长边在最小生成树中,那么一定存在一条更小的边替代它。
  • (3)最小瓶颈生成树:使最大边权值尽量小的生成树
  • 最小生成树就是这么一棵树,因为kruscal算法的过程
  • (4)最小瓶颈路:找u到v的一条路径满足最大边权值尽量小
  • 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这条路径
  • 如果只求一次,也可以用spfa稍作变形解决

本题求最苗条的生成树

可以发现对于一个最小边的权值,它对应的MST中的最大边的权值一定是最苗条的

枚举求就可以了

//
// main.cpp
// poj3522slim
//
// Created by Candy on 9/14/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,ans=INF;
struct edge{
int u,v,w;
bool operator<(const edge &rhs)const{return w<rhs.w;}
}e[N*N];
int p[N];
int find(int x){return x==p[x]?x:p[x]=find(p[x]);}
int kruskal(int st){
int ans=INF,cnt=;
for(int i=;i<=n;i++) p[i]=i;
for(int i=st;i<=m;i++){
int u=e[i].u,v=e[i].v;
int x=find(u),y=find(v);
if(x!=y){
ans=e[i].w;
p[x]=y;
if(++cnt==n-) break;
}
}
if(cnt!=n-) return -;
return ans;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
if(n==&&m==) break;
ans=INF;
for(int i=;i<=m;i++){
e[i].u=read();e[i].v=read();e[i].w=read();
}
sort(e+,e++m);
for(int st=;st<=m-n+;st++){
int tmp=kruskal(st);
if(tmp!=-) ans=min(ans,tmp-e[st].w);
}
if(ans!=INF) printf("%d\n",ans);
else printf("-1\n");
}
return ;
}

最小生成树POJ3522 Slim Span[kruskal]的更多相关文章

  1. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  2. POJ3522 Slim Span

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7462   Accepted: 3959 Descrip ...

  3. Uva1395 POJ3522 Slim Span (最小生成树)

    Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...

  4. 【kruscal】【最小生成树】poj3522 Slim Span

    求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  7. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  8. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  9. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. 【经验之谈】前端面试知识点总结03(JavaScript相关)——附答案

    目录 三.JavaScript部分 1.谈谈你对Ajax的理解?(概念.特点.作用) 2.说说你对延迟对象deferred的理解? 3.什么是跨域,如何实现跨域访问? 4.为什么要使用模板引擎? 5. ...

  2. checkbox全选,反选,取消选择 jquery

    checkbox全选,反选,取消选择 jquery. //checkbox全部选择 $(":checkbox[name='osfipin']").each(function(){ ...

  3. SharePoint 2010 站点附加数据升级到SP2013

    首先,去SharePoint 2010的数据库服务器上,找到站点的数据库,备份.还原到SharePoint 2013环境中: 如果不知道数据库服务器是哪台,可以通过服务器场上的服务器查看: 如果不知道 ...

  4. Android项目实战(二十):浅谈ListView悬浮头部展现效果

    先看下效果:需求是 滑动列表 ,其中一部分视图(粉丝数,关注数这一部分)在滑动到顶端的时候不消失,而是停留在整个界面头部. 我们先分析要解决的问题: 1.如何实现列表ListView顶部视图跟随Lis ...

  5. Android java传递string类型数据给C

    本文接着实现<Android java传递int类型数据给C>的还未实现的方法: public native String sayHelloInC(String s); 先贴一个工具方法, ...

  6. Android 中BaseActivty

    Base接口 IBaseActivity package liu.basedemo.base; /** * 基类接口 * Created by 刘楠 on 2016/7/28 0028.23:05 * ...

  7. Swift开发第九篇——Any和AnyObject&typealias和泛型接口

    本篇分为两部分: 一.Swift中的Any和AnyObject 二.Swift中的typealias和泛型接口 一.Swift中的Any和AnyObject 在 Swift 中,AnyObject 可 ...

  8. HTML5设计网页熔岩灯导航(navigation bar)插件 已经加上完整源代码

    导航栏(navigation bar): 1.指位于页眉区域的,在页眉横幅图片上边或下边的一排水平导航按钮,它起着链接博客的各个页面的作用. 2.网页设计中不可缺少的部分,它是指通过一定的技术手段,为 ...

  9. android Gui系统之SurfaceFlinger(2)---BufferQueue

    6 BufferQueue 上一篇已经说到,BufferQueue是SurfaceFlinger管理和消费surface的中介,我们就开始分析bufferqueue. 每个应用 可以由几个Buffer ...

  10. ASP.NET MVC Bootstrap极速开发框架

    前言 每次新开发项目都要从头开始设计?有木有一个通用的快速开发框架?并且得是ASP.NET MVC  And Bootstrap?数据库不要手工创建?框架对未来业务支持的扩展性好?这么简单的功能还需要 ...