大概有$O(m)$,$O(n\sqrt{nm})$,$O(n\sqrt{m})$的3个算法,其中后2个可以过加强版。代码是算法3,注意BZOJ的数据卡掉了小于20000的质数。

#include<algorithm>
#include<cstdio>
using std::sort;
typedef long long ll;
const int p1=20123;
const int p2=20201;
const int p3=2e8-9;
char z[10002];
typedef int arr[1001];
arr f1,f2,f3,s1,s2,s3;
int n,m,n1,n2,n3;
int eval(int x,int*f,int p){
ll s=0;
for(int i=n;~i;--i)
s=(s*x+f[i])%p;
return s;
}
void up(int&s,int t,int p){
s=(s*10ll+t-48)%p;
}
int inv(int t,int p){
int s=1;
for(int n=p-2;n;n>>=1){
if(n&1)s=s*t%p;
if(n>1)t=t*t%p;
}
return s;
}
const ll q1=p2*inv(p2,p1);
const ll q2=p1*inv(p1,p2);
const int p0=p1*p2;
int main(){
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i){
scanf("%s",z);
for(int j=*z=='-';z[j];++j){
up(f1[i],z[j],p1);
up(f2[i],z[j],p2);
up(f3[i],z[j],p3);
}
if(*z=='-'){
f1[i]=p1-f1[i];
f2[i]=p2-f2[i];
f3[i]=p3-f3[i];
}
}
for(int i=0;i<p1;++i)
if(!eval(i,f1,p1))s1[n1++]=i;
for(int i=0;i<p2;++i)
if(!eval(i,f2,p2))s2[n2++]=i;
for(int i=0;i<n1;++i)
for(int j=0;j<n2;++j){
int x=(s1[i]*q1+s2[j]*q2)%p0;
if(1<=x&&x<=m)
if(!eval(x,f3,p3))s3[n3++]=x;
}
printf("%d\n",n3);
sort(s3,s3+n3);
for(int i=0;i<n3;++i)
printf("%d\n",s3[i]);
}

[NOIP2014] 解方程&加强版 (bzoj3751 & vijos1915)的更多相关文章

  1. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  2. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  3. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  4. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  5. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  6. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  7. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  8. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

  9. 【bzoj3751】[NOIP2014]解方程 数论

    题目描述 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 输入 第一行包含2个整数n.m,每两个整数之间用一个空格隔开 ...

随机推荐

  1. nios II--实验5——定时器硬件部分

    定时器 硬件开发 新建原理图 打开Quartus II 11.0,新建一个工程,File -> New Project Wizard…,忽略Introduction,之间单击 Next>  ...

  2. java文件上传和下载

    简介 文件上传和下载是java web中常见的操作,文件上传主要是将文件通过IO流传放到服务器的某一个特定的文件夹下,而文件下载则是与文件上传相反,将文件从服务器的特定的文件夹下的文件通过IO流下载到 ...

  3. 神经网络dropout

    训练集上面,加一个bool型的开关 做预测的时候,不需要打开开关,而是所有的数乘以p, 实际工业界做的时候是: 在训练的时候都除以p,在做预测的时候什么时候都不用干

  4. 阅读 图解HTTP ,读书笔记

    阅读它的目的只有一个:就是想了解客户端与服务端的通信是怎么实现的?    数据的存储是怎么实现的?     数据流通过程中遇到什么问题.返回什么状态.该怎么解决? 网络基础 TCP / IP 通常使用 ...

  5. Android Loader使用详解

    1.CursorLoader使用Demo public class MainActivity extends Activity implements  LoaderManager.LoaderCall ...

  6. dede使用方法----调用导航

    在这里,极力推荐学习dede的朋友们观看老李的零基础织梦仿站系列课程的视频,讲的超级棒的~~ 网址链接是:http://www.dede888.com/15daylessons.html. 好了,言归 ...

  7. python3 异常处理

    什么是异常 Python用异常对象(exception object)来表示异常情况.遇到错误会引发异常,如果异常对象未被处理或者捕捉,程序就会用回溯(traceback)终止执行. Raise语句: ...

  8. OPENGL——背面剔除

    Opengl 表面剔除是提高 Opengl 程序渲染效率的一个有效途径. 我们知道,OpenGL 渲染的基本单位是一个个的三角形面片.无论多么复杂的3D 模 型都是由一个个基本的三角型的面片组成的. ...

  9. python-汉诺塔递归实现

    摘录自廖雪峰老师教程下的评论,个人备忘,脑细胞已死光 def move(from,to): #将盘子从from移动到to,动画效果需要脑补 print(from,'->',to) def han ...

  10. 深入理解Java多态机制

    从字节码层面来看,Java中的所有方法调用,最终无外乎转换为如下几条调用指令. invokestatic: 调用静态方法. invokespecial: 调用实例构造器<init>方法,私 ...