假设序列$b_{i}$为最终第$i$片上的草莓数,即需要满足:$\forall 0\le i<2n,a_{i}\le \sum_{j=0}^{n-1}b_{(i+j)mod\ 2n}$

要求最小化$\sum_{i=0}^{2n-1}b_{i}$,显然增大$b_{i}$一定仍满足条件,即具备单调性,二分并判断其是否可以为$X$

为了避免取模,将条件分为$0\le i<n$以及$n\le i<2n$两部分,分别可以写作:

1.$\forall 0\le i<n,a_{i}\le \sum_{j=0}^{n-1}b_{i+j}$

2.$\forall n\le i<2n,a_{i}\le \sum_{j=i}^{2n-1}b_{j}+\sum_{j=0}^{i-n-1}b_{j}$,考虑后者中不被计算的是一个连续区间,可以用$X$减去这一段,即$X-\sum_{j=i-n-1}^{i-1}b_{j}$,移项后即$\sum_{j=i-n}^{i-1}b_{j}\le X-a_{i}$

两部分分别限制了上下限,即条件也可以写作:$\forall 0\le i<n,a_{i}\le \sum_{j=0}^{n-1}b_{i+j}\le X-a_{i+n}$

对其求前缀和,令$S_{i}=\sum_{j=0}^{i-1}b_{j}$,即要求$a_{i}\le S_{i+n}-S_{i}\le X-a_{i+n}$

另一方面,根据$b_{i}\ge 0$,还要求$S_{i}\le S_{i+1}$(特别的,要求$S_{0}=0$以及$S_{2n-1}\le X$)

同时,上面这两个条件也是充分条件,问题即判断是否存在满足上述条件的$S_{i}$

将之变形,最终所有条件都可以写作$S_{i}+x\le S_{j}$,即差分约束的形式

更具体的来说,建有向边$(i,j,x)$并从0开始求最长路,令$d_{i}$为到$i$的最长路,即满足此条件

另外,有正环或最终$d_{2n-1}>X$即无解(这里最长路才是$S_{2n-1}$的最小值)

由于有正权边(求最长路),只能使用spfa,以及最外层的二分,复杂度为$o(n^{2}\log A)$,且会被卡

事实上,由于这张图的特殊性,有如下做法:

如果将$(n-1,n,0)$这条边删去,将整张图看作上下两行,分别为$[0,n)$和$[n,2n)$,图的结构即比较简单,仅包含上下两行对应点之的有环,以及两行向后的边

此时将两个对应点的最长路一起算,即没有了后效性,可以$o(n)$求出

(特别的,若$a_{i}+a_{i+n}>X$即存在两个对应点之间的正环,即无解)

加入这条边后,在没有正环的情况下,先忽略这条边求出最长路,再加入这条边后用$S_{n-1}$更新$S_{n}$并重复一次求最长路(仍然忽略这条边),若$S_{n-1}$发生变化必然存在正环,否则即求出了最长路

(另外更新$S_{n}$后,还需要判断是否满足$S_{n}\le X-a_{n}$)

这一做法复杂度$o(n\log A)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define ll long long
5 int E,n,a[N];
6 ll d[N];
7 void calc(ll k){
8 for(int i=1;i<n;i++){
9 d[i]=max(d[i-1],d[i+n-1]+a[i+n]-k);
10 d[i+n]=max(d[i+n-1],d[i-1]+a[i]);
11 }
12 }
13 bool check(ll k){
14 for(int i=0;i<n;i++)
15 if (a[i]+a[i+n]>k)return 0;
16 d[n]=a[0];
17 calc(k);
18 ll lst=d[n-1];
19 d[n]=max(d[n],d[n-1]);
20 if (d[n]>k-a[n])return 0;
21 calc(k);
22 if (lst!=d[n-1])return 0;
23 return d[2*n-1]<=k;
24 }
25 int main(){
26 scanf("%d",&n);
27 for(int i=0;i<2*n;i++)scanf("%d",&a[i]);
28 ll l=0,r=1e15;
29 while (l<r){
30 ll mid=(l+r>>1);
31 if (check(mid))r=mid;
32 else l=mid+1;
33 }
34 printf("%lld",l);
35 }

[ARC117F]Gateau的更多相关文章

  1. p_b_p_b 杂题选讲

    [ARC119F] AtCoder Express 3 [ARC117F] Gateau 考虑二分答案,对前缀和建差分约束 \(\text{check}\) ,但是用 \(\text{spfa}\) ...

  2. Compiler Theory(编译原理)、词法/语法/AST/中间代码优化在Webshell检测上的应用

    catalog . 引论 . 构建一个编译器的相关科学 . 程序设计语言基础 . 一个简单的语法制导翻译器 . 简单表达式的翻译器(源代码示例) . 词法分析 . 生成中间代码 . 词法分析器的实现 ...

随机推荐

  1. JS返回一个字符串中长度最小的单词的长度

    题目:编写一个方法,返回字符串中最小长度的单词的长度. var str = 'What a good day today!'; 1 //方法一 2 function returnString1(str ...

  2. hdu3001(三进制状压)

    题目大意: 现在给你一个有n个点和m条边的图,每一条边都有一个费用,每个点不能经过超过两次,求所有点至少遍历一次的最小费用 其中n<=10 m没有明确限制(肯定不会超过1e5) 一看到这个数据范 ...

  3. SpringBoot使用注解进行分页

    分页使用可以说非常普遍了,有时候会需要非常灵活的方式去开启或关闭分页,尝试使用一下注解的方式来进行分页. 依赖安装 需要使用的依赖: Mybatis-Plus PageHelper SpringBoo ...

  4. python反序列化1(__reduce__)

    part1:不求甚解的复现 对于服务端源码:    编写恶意序列化对象生成程序: 将生成的恶意序列化对象输入服务端user,使其执行系统命令.(上面那俩其实都行) part2:原理解释 b'xxx'是 ...

  5. 普通用户在命令终端使用Python脚本连入校园网

    普通用户在命令终端使用Python脚本连入校园网 想要连入校园网的步骤: 浏览器输入对应的IP地址,输入账号密码连网: 下载对应软件,输入账号密码连网: 而面对没有界面的服务器,而你又没有root权限 ...

  6. websocket入门案例(echo)

    websocket是用来干什么的,具体的请自行百度. 本文实现一个简单的websocket的入门小例子,实现客户端发送一句换,服务器端返回.即一个简单的交互. 一.服务器端的实现 1.创建一个类实现S ...

  7. 带你用AVPlayer实现音频和视频播放

    项目概述 以下项目是基于AVPlayer的实际运用,实现音频播放.横竖屏视频切换播放.类似抖音的竖屏全屏播放效果. 项目地址:AVPlayerAudioVideo 如果文章和项目对你有帮助,还请给个S ...

  8. 记录编译QGIS(3.4+Qt5.11+VS2015)的整个过程

    编译运行整个QGIS耗时耗力,由于本人比较愚钝,来来回回花了大概两个星期最终编译成功,记录一下整个过程,一方面备忘,另一方面可能也给别人一点借鉴. 1.准备工作 参考了许多网上的教程,李民录大神的&l ...

  9. Py高级函数和方法

    Map() Redece() Dir() __len__   ---->>>  len() getattr().setattr() 以及   hasattr() 参考廖雪峰----- ...

  10. [转]DDR相关的一些基础知识

    ODT ( On-DieTermination ,片内终结)ODT 也是 DDR2 相对于 DDR1 的关键技术突破,所谓的终结(端接),就是让信号被电路的终端吸 收掉,而不会在电路上形成反射, 造成 ...