洛谷4630APIO2018铁人两项(圆方树+dp)
QWQ神仙题啊(据说是今年第一次出现圆方树的地方)
首先根据题目,我们就是求对于每一个路径\((s,t)\)他的贡献就是两个点之间的点数,但是图上问题我并没有办法很好的解决。。。
这时候考虑圆方树,我们将圆方树建出来之后,
我们令方点的权值是他所连接的圆点之和,圆点的权值是\(-1\)。
这里之所以让圆点的贡献是-1,是为了方便表示路径的贡献(不然貌似比较复杂)。
如果我们这么赋值的话,那么一个条路经的贡献就应该是点权之和。
QWQ可惜枚举两个端点是\(O(n^2)\)复杂度的
那么这时候,我们就可以直接考虑每个点作为中心的贡献,那么他的贡献就应该是:
子树外到子树内的贡献+子树之间的贡献。
那么我们只需要一边\(dfs\),一边维护\(size\)并更新\(ans\)就行
void dfs(int x)
{
vis[x]=1;
int tmp=0;
if (x<=n) tmp=1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (vis[p]) continue;
dfs(p);
ans=ans+tmp*size[p]*val[x];
tmp+=size[p];
// cout<<ans<<endl;
}
ans=ans+size[x]*(sum-size[x])*val[x];
}
不过要注意的是,最后的\(ans\)需要乘2,因为是双向的
而且图不一定联通!!!!!
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 3e5+1e2;
const int maxm = 2*maxn;
int point[maxn],nxt[maxm],to[maxm];
int point1[maxn],nxt1[maxm],to1[maxm];
int cnt,cnt1;
int n,m;
int f[maxn],val[maxn],size[maxn],g[maxn];
int vis[maxn];
int top,st[maxn];
int low[maxn],dfn[maxn];
int ans;
void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
}
void addedge1(int x,int y)
{
nxt1[++cnt1]=point1[x];
to1[cnt1]=y;
point1[x]=cnt1;
}
int tot,num;
void tarjan(int x,int fa)
{
dfn[x]=low[x]=++tot;
st[++top]=x;
for (int i=point1[x];i;i=nxt1[i])
{
int p = to1[i];
if (p==fa) continue;
if (!dfn[p])
{
tarjan(p,x);
low[x]=min(low[x],low[p]);
if (low[p]>=dfn[x])
{
++num;
addedge(num,x);
addedge(x,num);
val[num]++;
do{
addedge(st[top],num);
addedge(num,st[top]);
val[num]++;
top--;
}while (st[top+1]!=p);
}
}
else
low[x]=min(low[x],dfn[p]);
}
}
void dp(int x,int faa)
{
if (x<=n)
size[x]=1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (p==faa) continue;
dp(p,x);
size[x]+=size[p];
}
//cout<<x<<" "<<size[x]<<endl;
}
int sum;
void dfs(int x)
{
vis[x]=1;
int tmp=0;
if (x<=n) tmp=1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (vis[p]) continue;
dfs(p);
ans=ans+tmp*size[p]*val[x];
tmp+=size[p];
// cout<<ans<<endl;
}
ans=ans+size[x]*(sum-size[x])*val[x];
}
signed main()
{
n=read(),m=read();
num=n;
for (int i=1;i<=n;i++) val[i]=-1;
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
addedge1(x,y);
addedge1(y,x);
}
for (int i=1;i<=n;i++)
{
if(!dfn[i]) tarjan(i,0);
}
for (int i=1;i<=n;i++)
{
if(!vis[i])
{
dp(i,0);
sum=size[i];
dfs(i);
}
}
cout<<ans*2<<endl;
return 0;
}
洛谷4630APIO2018铁人两项(圆方树+dp)的更多相关文章
- 洛谷P4630 铁人两项--圆方树
一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn ...
- [BZOJ5463][APIO2018]铁人两项(圆方树DP)
题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...
- [APIO2018] Duathlon 铁人两项 圆方树,DP
[APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)
Description 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...
- LOJ 2587 「APIO2018」铁人两项——圆方树
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...
- loj2587 「APIO2018」铁人两项[圆方树+树形DP]
主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...
随机推荐
- ES6扩展——字符串部分新的方法
1.padStart padEnd(count, 字符串) 补全字符串 //padStart(num,str) padEnd补全一个字符串的长度 //num表示补全到几位,str是用来填充的字符串 { ...
- ecshop文件架构
/*ECShop 2.5.1 的结构图及各文件相应功能介绍ECShop2.5.1_Beta upload 的目录┣ activity.php 活动列表┣ affiche.php 广告处理文件┣ aff ...
- RabbitMQ-初见
目录 什么是中间件 消息队列协议 AMQP协议 MQTT协议 OpenMessage协议 Kafka协议 消息队列持久化 消息的分发策略 消息队列高可用和高可靠 什么是高可用机制 集群模式1 - Ma ...
- Vue 2.0 与 Vue 3.0 响应式原理比较
Vue 2.0 的响应式是基于Object.defineProperty实现的 当你把一个普通的 JavaScript 对象传入 Vue 实例作为 data 选项,Vue 将遍历此对象所有的 prop ...
- Robot Framework 面试题
什么是 RF 基于可扩展关键字驱动的自动化测试框架 什么是可扩展关键字驱动 可扩展意味着可以自己开发,也可以调用第三方的关键字库 关键字驱动意味着测试用例都是围绕着关键字运行的 RF 的原理(框架?) ...
- RabbitMQ-如何保证消息在99.99%的情况下不丢失
1. 简介 MQ虽然帮我们解决了很多问题,但是也带来了很多问题,其中最麻烦的就是,如何保证消息的可靠性传输. 我们在聊如何保证消息的可靠性传输之前,先考虑下哪些情况下会出现消息丢失的情况. 首先,上图 ...
- junit4 套件测试
junit4 中的套件可以用来测试一个需要依赖的业务流程,如购买必须依赖与登录成功 代码实现: 测试数据存放 public class BaseTest { protected static Hash ...
- Linux残留的EFI启动项删除后又恢复的问题
电脑Windows + Fedora双系统,UEFI启动,共用同一个EFI分区.现在删除了Fedora系统,那么应该将EFI分区中的Fedora启动项也删除之. 按照网上的办法,在Windows上,尝 ...
- 面试HashMap你都扛不住,还想拿到offer?
当我们面试Java开发岗位时,面试官问的频率出现最多的问题,就是这个HashMap,不管是传统型公司还是互联公司,HashMap是必问的,所以作者爆肝整理了HashMap的23个问题以及答案,请查收! ...
- K8s工作流程详解
在学习k8s工作流程之前,我们得再次认识一下上篇k8s架构与组件详解中提到的kube-controller-manager一个k8s中许多控制器的进程的集合. 比如Deployment 控制器(Dep ...