降维处理PCA
- 数据在低维下更容易处理、更容易使用;
- 相关特征,特别是重要特征更能在数据中明确的显示出来;如果只有两维或者三维的话,更便于可视化展示;
- 去除数据噪声
- 降低算法开销

去除平均值计算协方差矩阵计算协方差矩阵的特征值和特征向量将特征值从大到小排序保留最上面的N个特征向量将数据转换到上述N个特征向量构建的新空间中
# 加载数据的函数def loadData(filename, delim = '\t'):fr = open(filename)stringArr = [line.strip().split(delim) for line in fr.readlines()]datArr = [map(float,line) for line in stringArr]return mat(datArr)# =================================# 输入:dataMat:数据集# topNfeat:可选参数,需要应用的N个特征,可以指定,不指定的话就会返回全部特征# 输出:降维之后的数据和重构之后的数据# =================================def pca(dataMat, topNfeat=9999999):meanVals = mean(dataMat, axis=0)# axis = 0表示计算纵轴meanRemoved = dataMat - meanVals #remove meancovMat = cov(meanRemoved, rowvar=0)# 计算协方差矩阵eigVals,eigVects = linalg.eig(mat(covMat))# 计算特征值(eigenvalue)和特征向量eigValInd = argsort(eigVals) #sort, sort goes smallest to largesteigValInd = eigValInd[:-(topNfeat+1):-1] #cut off unwanted dimensionsredEigVects = eigVects[:,eigValInd] #reorganize eig vects largest to smallestlowDDataMat = meanRemoved * redEigVects#transform data into new dimensionsreconMat = (lowDDataMat * redEigVects.T) + meanValsreturn lowDDataMat, reconMat
filename = r'E:\ml\machinelearninginaction\Ch13\testSet.txt'dataMat = loadData(filename)lowD, reconM = pca(dataMat, 1)

def plotData(dataMat,reconMat):fig = plt.figure()ax = fig.add_subplot(111)# 绘制原始数据ax.scatter(dataMat[:, 0].flatten().A[0], dataMat[:,1].flatten().A[0], marker='^', s = 90)# 绘制重构后的数据ax.scatter(reconMat[:,0].flatten().A[0], reconMat[:,1].flatten().A[0], marker='o', s = 10, c='red')plt.show()

lowD, reconM = pca(dataMat, 2)

降维处理PCA的更多相关文章
- 机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...
- 降维技术---PCA
数据计算和结果展示一直是数据挖掘领域的难点,一般情况下,数据都拥有超过三维,维数越多,处理上就越吃力.所以,采用降维技术对数据进行简化一直是数据挖掘工作者感兴趣的方向. 对数据进行简化的好处:使得数据 ...
- 降维之pca算法
pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的. 将XX中的 ...
- 降维【PCA & SVD】
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数 ...
- 机器学习算法总结(九)——降维(SVD, PCA)
降维是机器学习中很重要的一种思想.在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”.另 ...
- 降维方法PCA与SVD的联系与区别
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...
- ML: 降维算法-PCA
PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 ...
- 特征降维之PCA
目录 PCA思想 问题形式化表述 PCA之协方差矩阵 协方差定义 矩阵-特征值 PCA运算步骤 PCA理论解释 最大方差理论 性质 参数k的选取 数据重建 主观理解 应用 代码示例 PCA思想 PCA ...
- 机器学习之路:python 特征降维 主成分分析 PCA
主成分分析: 降低特征维度的方法. 不会抛弃某一列特征, 而是利用线性代数的计算,将某一维度特征投影到其他维度上去, 尽量小的损失被投影的维度特征 api使用: estimator = PCA(n_c ...
- 降维算法-PCA主成分分析
1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1 ...
随机推荐
- linux修改默认的SSH远程端口22
1.编辑sshd_config文件 [root@localhost ~]# vim /etc/ssh/sshd_config 搜索 #Port 22行,删除开头的 # 字符,然后将其替换为要使用的端 ...
- 教你三步在CentOS 7 中安装或升级最新的内核
转载自:https://www.linuxprobe.com/update-kernel-centos7.html #步骤 1:检查已安装的内核版本 >uname -sr #步骤 2:在 Cen ...
- spring boot 解决 跨域 的两种方法 -- 前后端分离
1.前言 以前做项目 ,基本上是使用 MVC 模式 ,使得视图与模型绑定 ,前后端地址与端口都一样 , 但是现在有些需求 ,需要暴露给外网访问 ,那么这就出现了个跨域问题 ,与同源原则冲突, 造成访问 ...
- nuxt服务端渲染
<template> <div class="page"> page is search <ul> <li v-for="(it ...
- react中使用immutable
官方文档(https://immutable-js.github.io/immutable-js/docs/#/) 有人说 Immutable 可以给 React 应用带来数十倍的提升,也有人说 Im ...
- Win10+Java7环境配置
原文链接: https://www.toutiao.com/i6487838676326810125/ 安装包: jdk-7u79-windows-x64-20151024 打开安装目录 双击运行程序 ...
- RHCSA 第六天
一. 创建下列用户.组和组成员资格: 1.创建名为 sysmgrs 的组 2.创建用户 natasha 同时指定sysmgrs作为natasha的附加组 3.创建用户 harry 同时指定 sysm ...
- k8s的应用包管理工具helm的部署和使用
1.概述 我们一般是在k8s里面部署一些简单的应用,比如用deployment,daemonset,statefuleset的方式来部署应用,但是如果要部署一些复杂的应用,那么整个配置的编写.部署的过 ...
- 【笔记】golang中使用protocol buffers的底层库直接解码二进制数据
背景 一个简单的代理程序,发现单核QPS达到2万/s左右就上不去了,40%的CPU消耗在pb的decode/encode上面. 于是我想,对于特定的场景,直接从[]byte中取出字段,而不用完全的把整 ...
- MySQL查询处理——逻辑查询处理和物理查询处理
对于查询处理,可将其分为逻辑查询处理和物理查询处理.逻辑查询处理表示执行查询应该产生什么样的结果,而物理查询代表MySQL数据库是如何得到结果的. 逻辑查询处理 MySQL真正的执行顺序如下: (8) ...