CF1455A Strange Functions 题解
Content
定义一个函数 \(f(x)\) 为 \(x\) 翻转并去掉前导零之后的数,现在有 \(t\) 组询问,每组询问给定一个整数 \(n\),请求出对于所有的 \(1\leqslant x\leqslant n\),\(g(x)=\dfrac{x}{f(f(x))}\) 的取值有多少种。
数据范围:\(1\leqslant t\leqslant 100,1\leqslant n<10^{100}\)。
Solution
签到题。
我们发现,如果一个数 \(x\) 有 \(k\) 个 \(0\),那么 \(g(x)=10^k\),因此如果给定的 \(n\) 有 \(l\) 位,那么所有 \(0\) 到 \(l-1\) 个 \(0\) 的情况都能被取到,也就是 \(g(x)\) 能够取到 \(1,10,100,...,10^{l-1}\)。因此答案就是 \(l\)。
我们可以直接用字符串读入数字然后利用 size() 或者 length() 函数得到其位数。
Code
int t;
string s;
int main() {
t = Rint;
while(t--) {
cin >> s;
printf("%d\n", s.size());
}
return 0;
}
CF1455A Strange Functions 题解的更多相关文章
- Hdoj 1548.A strange lift 题解
Problem Description There is a strange lift.The lift can stop can at every floor as you want, and th ...
- HDU 1548 A strange lift 题解
A strange lift Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- Hdoj 2899.Strange fuction 题解
Problem Description Now, here is a fuction: F(x) = 6 * x^7+8x^6+7x^3+5x^2-yx (0 <= x <=100) Ca ...
- CF1506A Strange Table 题解
Content 给定一个 \(n\times m\) 的矩阵.一开始,\((1,1)\) 所在位置上面的数是 \(1\),随后先由上往下将这一列中的所有位置上面填上 \(2,3,\dots,n\),再 ...
- IOCCC(The International Obfuscated C Code Contest)
国际 C 语言混乱代码大赛(IOCCC, The International Obfuscated C Code Contest)是一项国际编程赛事,从 1984 年开始,每年举办一次(1997年.1 ...
- 算法与数据结构基础 - 堆栈(Stack)
堆栈基础 堆栈(stack)具有“后进先出”的特性,利用这个特性我们可以用堆栈来解决这样一类问题:后续的输入会影响到前面的阶段性结果.线性地遍历输入并用stack处理,这类问题较简单,求解时间复杂度一 ...
- POJ2891:Strange Way to Express Integers——题解
http://poj.org/problem?id=2891 题目大意: k个不同的正整数a1,a2,...,ak.对于一些非负m,满足除以每个ai(1≤i≤k)得到余数ri.求出最小的m. 输入和输 ...
- 题解 Strange Housing
传送门 首先想了黑白染色,发现不会染 其实可以考虑如何动态地维护出这个点集 发现题面里对不在点集之中的点之间的连边没有要求 所以考虑不断向图中加点,为了满足要求,每次取一个与当前新图中相连的点 若它与 ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
随机推荐
- 记一次 android 线上 oom 问题
背景 公司的主打产品是一款跨平台的 App,我的部门负责为它提供底层的 sdk 用于数据传输,我负责的是 Adnroid 端的 sdk 开发. sdk 并不直接加载在 App 主进程,而是隔离在一个单 ...
- Codeforces Gym 101175F - Machine Works(CDQ 分治维护斜率优化)
题面传送门 首先很明显我们会按照 \(d_i\) 的顺序从小到大买这些机器,故不管三七二十一先将所有机器按 \(d_i\) 从小到大排序. 考虑 \(dp\),\(dp_i\) 表示在时刻 \(d_i ...
- Codeforces 1519F - Chests and Keys(暴搜+以网络流为状态的 dp)
Codeforces 题目传送门 & 洛谷题目传送门 难度终于出来了--又独立切掉一道 *3200,凯信(所以我已经独立切掉三道 *3200 了?) 首先考虑我们已经知道了每个宝箱上有哪些锁, ...
- Mysql 预处理 PREPARE以及预处理的好处
Mysql 预处理 PREPARE以及预处理的好处 Mysql手册 预处理记载: 预制语句的SQL语法在以下情况下使用: · 在编代码前,您想要测试预制语句在您的应用程序中运行得如何.或者也许一个 ...
- linux下面升级 Python版本并修改yum属性信息
最近需要在linux下使用python,故需要升级一下python版本,上网查询了一下相关资料,更新了一下linux下面的python环境,记录如下: linux下面升级 Python版本并修改yum ...
- 编程艺术第十六~第二十章:全排列/跳台阶/奇偶调序,及一致性Hash算法
目录(?)[+] 第十六~第二十章:全排列,跳台阶,奇偶排序,第一个只出现一次等问题 作者:July.2011.10.16.出处:http://blog.csdn.net/v_JULY_v. 引言 ...
- 腾讯云联合中国信通院&作业帮等首发《降本之源-云原生成本管理白皮书》
在11月4日举办的2021腾讯数字生态大会云原生专场上,腾讯云联合中国信通院.作业帮等率先在国内重磅发布了<降本之源-云原生成本管理白皮书>(简称白皮书),基于腾讯云在业内最大规模的 Ku ...
- canal从mysql拉取数据,并以protobuf的格式往kafka中写数据
大致思路: canal去mysql拉取数据,放在canal所在的节点上,并且自身对外提供一个tcp服务,我们只要写一个连接该服务的客户端,去拉取数据并且指定往kafka写数据的格式就能达到以proto ...
- Gradle—Android配置详解
参考[1]彻底弄明白Gradle相关配置 [2]Android Studio gradle配置详解
- Equinox OSGi服务器应用程序的配置步骤 (支持JSP页面)
本文介绍在Eclipse里如何配置一个简单的基于Eclipse Equinox OSGi实现的Web应用程序,在它的基础上可以构造更加复杂的应用,本文使用的是Eclipse 3.3.1版本,如果你的E ...