LuoguP2556 [AHOI2002]黑白图像压缩 题解
Content
题目描述太过于繁琐而无法简化,请前往原题面查看。
数据范围:\(1\leqslant n\leqslant 8\times 10^4\)。
Solution & Code
一个个人认为比较繁琐的模拟,但是思维难度奇低。
可能我的方法和题解区里面的大部分题解相比过程可能要复杂些,果然还是把简单问题想复杂化了……但是思路应该是清晰的。
话回正题,我们将所要做的程序分为四部分,本题解根据这四部分分开讲解,并且代码也只会分部分给。
Part 1 读入&转化为二进制
我们将这 \(\frac n8\) 个数读入进来之后,首先最主要的就是将这些数转化为八位的二进制数。我们可以考虑开个空字符串,每一轮将当前数 \(x\bmod 2\) 的余数放到字符串的最后面,然后再 \(x\leftarrow \left\lfloor\frac x2\right\rfloor\)。最后再将整个字符串翻转过来就好了。注意,如果原数转换为二进制不足 \(8\) 位,则要在前面补足前导零。最后将得到的 \(\frac n8\) 个字符串按顺序拼接在一起,得到大字符串 \(t\)。
n = Rint;
F(int, i, 1, n / 8) {
int x = Rint; string tmp = "";
while(x) tmp += (x % 2 + '0'), x /= 2;
int len = tmp.size();
if(len < 8) F(int, j, 1, 8 - len) tmp += "0";
reverse(tmp.begin(), tmp.end()); //由于我们得到的字符串是反过来的,因此需要翻转一下,用到的是 STL 中的 reverse 函数。
t += tmp;
}
Part 2 分段
这一个部分比较简单,我们扫一遍字符串 \(t\),一碰到和前面的字符不相等的情况就直接新建一段,存储当前这一段子串(其实只要存储第一个字符)及其长度。
string tmp = "";
F(int, i, 0, n) {
if((i == 0 || t[i] == t[i - 1]) && i != n) tmp += t[i];
else a[++cnt] = (node){tmp, (int)tmp.size()}, tmp.clear(), tmp += t[i];
}
Part 3 用二进制表示片段
有了前面的二进制转化的借鉴,这里就不用我再多说了吧,直接上代码。
F(int, i, 1, cnt) {
newt[i] += a[i].s[0];
int p = a[i].t;
string tmp2 = "";
while(p) tmp2 += (p % 2 + '0'), p /= 2;
reverse(tmp2.begin(), tmp2.end());
int len = tmp2.size();
if(len + 1 < 8) F(int, j, 1, 7 - len) newt[i] += "0";
newt[i] += tmp2;
}
Part 4 转化为十进制&输出
首先看二进制如何转化为十进制的问题。我们都知道,二进制的规则是“满二进一”,所以不难发现,从低到高的第 \(i\) 位上面的数字 \(x\) 转换到十进制就是 \(x\times 2^{i-1}\)。
因此,我们按照这种思路将十进制转换为二进制就很简单了,然后这道题目就这么愉快地做完了。
放上最后一部分的代码。
F(int, i, 1, cnt) {
int ans = 0;
F(int, j, 0, 7) ans += (newt[i][j] - '0') * (1 << (7 - j));
printf("%d%c", ans, " \n"[i == cnt]);
}
总体来说思维难度不是很大(起码我觉得比题解区的好想),实现起来有点麻烦,但也是一种行之有效的方法。
最终代码就把上面着四个部分拼接起来就好了,那么就不放完整代码了。
LuoguP2556 [AHOI2002]黑白图像压缩 题解的更多相关文章
- 洛谷——P2556 [AHOI2002]黑白图像压缩
P2556 [AHOI2002]黑白图像压缩 题目描述 选修基础生物基因学的时候, 小可可在家里做了一次图像学试验. 她知道:整个图像其实就是若干个图像点(称作像素)的序列,假定序列中像素的个数总是 ...
- 洛谷P2556 [AHOI2002] 黑白图像压缩 [模拟]
题目传送门 黑白图像压缩 题目描述 选修基础生物基因学的时候, 小可可在家里做了一次图像学试验. 她知道:整个图像其实就是若干个图像点(称作像素)的序列,假定序列中像素的个数总是 8 的倍数, 于是每 ...
- P2561 [AHOI2002]黑白瓷砖
$ \color{#0066ff}{ 题目描述 }$ \(\color{#0066ff}{输入格式}\) 文件中以一行的形式存放一个正整数 n , n ≤ 20 . \(\color{#0066ff} ...
- [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...
- Codeforces Round #368 (Div. 2) A. Brain's Photos 水题
A. Brain's Photos 题目连接: http://www.codeforces.com/contest/707/problem/A Description Small, but very ...
- 尝试一下LLJ大佬的理论AC大法
1.BZOJ 3522 Poi2014 Hotel DFS 给定一棵树,求有多少无序三元组(x,y,z)满足x,y,z互不相等且Dis(x,y)=Dis(y,z)=Dis(x,z) 枚举中心点,分别d ...
- 「算法笔记」Polya 定理
一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...
- [题解+总结]动态规划大合集II
1.前言 大合集总共14道题,出自江哥之手(这就没什么好戏了),做得让人花枝乱颤.虽说大部分是NOIP难度,也有简单的几道题目,但是还是做的很辛苦,有几道题几乎没思路,下面一道道边看边分析一下. 2. ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
随机推荐
- ThinkPad笔记本外放没声音解决办法(不是驱动的原因)
本人的本子是T480,自从装完Ubuntu系统之后W10系统就没有外放声音了,卸载Ubuntu之后还是没有声音,重装声卡驱动.重装系统之后依然无效. 我的解决办法是升级主板Bois,具体如下: 进入官 ...
- P6072 『MdOI R1』Path
考虑我们有这样操作. 我们只要维护两点在子树内和两点在子树外的异或和即可. 前者可以类似于线段树合并的trie树合并. 后者有两种做法: 一种是把dfn序翻倍:然后子树补变成了一个区间最大异或问题,可 ...
- HDU 6987 - Cycle Binary(找性质+杜教筛)
题面传送门 首先 mol 一发现场 AC 的 csy 神仙 为什么这题现场这么多人过啊啊啊啊啊啊 继续搬运官方题解( 首先对于题目中的 \(k,P\),我们有若存在字符串 \(k,P,P'\) 满 ...
- Pandas 简介
Pandas 简介 pandas 是 python 内基于 NumPy 的一种工具,主要目的是为了解决数据分析任务.Pandas 包含了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具 ...
- 【Python小试】判断一条序列GC含量高低
题目: 随便给定一条序列,如果GC含量超过65%,则认为高. 编程: from __future__ import division #整数除法 def is_gc_rich(dna): length ...
- mysql—mysql查询语句提示Unknown column ‘xxx’ in ‘where clause’
运行结果中提示Unknown column 'xxx' in 'where clause'的问题.经过大神的指导,顿时明白其中缘由,如果sql中定义的类型是int型的可以不用加引号,但是如果是字符串类 ...
- 云原生时代,为什么基础设施即代码(IaC)是开发者体验的核心?
作者 | 林俊(万念) 来源 |尔达 Erda 公众号 从一个小故事开始 你是一个高级开发工程师. 某天,你自信地写好了自动煮咖啡功能的代码,并在本地调试通过.代码合并入主干分支后,你准备把服务发布到 ...
- Java实现读取文件
目录 Java实现读取文件 1.按字节读取文件内容 使用场景 2.按字符读取文件内容 使用场景 3.按行读取文件内容 使用场景 4.随机读取文件内容 使用场景 Java实现读取文件 1.按字节读取文件 ...
- 案例 stm32单片机,adc的双通道+dma 内部温度
可以这样理解 先配置adc :有几个通道就配置几个通道. 然后配置dma,dma是针对adc的,而不是针对通道的. 一开始我以为一个adc通道对应一个dma通道.(这里是错的,其实是我想复杂了) 一个 ...
- jmeter进阶
1.如果(if)控制器的使用 2.参数的调用 3.数据库的链接