回溯——51. N皇后
这一题在我刚开始拿到的时候,是一点思路都没有的,只能先分析题目的要求,即queen之间的规则:
- 不能同行
- 不能同列
- 不能同斜线
- 不能同左斜
- 不能同右斜
同时发现,在寻找所有可能结果的穷举过程中,传入的参数并不需要以整个“棋盘”的形式,只需要传入之前确定的所有queen的位置即可。
这样就可以先写下,在遍历每个潜在的位置合法性的判断函数,同时确定回溯时使用的重要的数据格式:
//coordinateXY[i]:第i个点的横纵坐标
//coordinateXY[i][0]——横坐标
//coordinateXY[i][1]——纵坐标
int[][] coordinateXY = new int[n][2]; //x1 y1 是需要判断的是否合法的坐标
private boolean validXY(int x1, int y1, int[][] coordinateXY) {
int x2 = -1, y2 = -1;
for (int i = 0; i < n && coordinateXY[i][1] != -1; ++i) {
x2 = coordinateXY[i][0];
y2 = coordinateXY[i][1];
// 同列 || 同左斜 || 同右斜
if ((y1 == y2) || (x1+y1 == x2+y2) || (x1-x2 == y1-y2)) {
return false;
}
}
return true;
}
回溯时记录结果的数据格式coordinateXY确定了,自然可以确定最终结果集的构造:
List<List<String>> result = new ArrayList<>();
//构造返回值
private List<String> print(int[][] coordinateXY) {
List<String> ans = new ArrayList<>();
StringBuilder sb = null;
int y = -1;
for (int[] xy : coordinateXY) {
sb = new StringBuilder();
y = xy[1];
for (int i = 0; i < n; ++i) {
//三元表达式代替if-else
sb.append((i == y) ? "Q" : ".");
}
ans.add(sb.toString());
}
return ans;
}
最后根据回溯三部曲,确定下回溯函数:
//x:当前的第x个queen,也是这个queen所在的横坐标的值
private void function(int x, int[][] coordinateXY) {
//如果x==n,证明0~n-1个queen都已经确定了坐标,即可记录下此结果
if (x == n) {
result.add(print(coordinateXY));
return ;
} //对于当前这个第x个queen,横坐标coordinateXY[x][0] == x
//只要从0 ~ n-1寻找合法的y即可
for (int y = 0; y < n; ++y) {
if (validXY(x, y, coordinateXY)) {
//记录下合法的坐标
coordinateXY[x][1] = y;
//将第x个queen的纵坐标加入path(coordinateXY),递归的寻找第x+1个queen的所有合法的纵坐标
function(x+1, (int[][]) coordinateXY.clone());
//删除本次记录,继续寻找下一个可能的y
coordinateXY[x][1] = -1;
}
}
}
这题的关键点主要在:
- 确定记录结果的数据结构
- 确定validXY函数
- 根据queen不能在同一行,确定下回溯是按照行向下遍历的逻辑
回溯——51. N皇后的更多相关文章
- Leetcode之回溯法专题-51. N皇后(N-Queens)
Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给 ...
- Java实现 LeetCode 51 N皇后
51. N皇后 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题的解决 ...
- 【回溯】n皇后问题
问题 U: [回溯]n皇后问题 时间限制: 1 Sec 内存限制: 128 MB提交: 4 解决: 4[提交][状态][讨论版] 题目描述 在一个国际象棋棋盘上,放置n个皇后(n<10),使 ...
- 回溯算法————n皇后、素数串
回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇 ...
- 回溯算法 - n 皇后问题
(1)问题描述 在 n × n 格的棋盘上放置彼此不受攻击的 n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 后问题等价于在 n × n 的棋盘上放置 n 个 ...
- leetcode 51. N皇后 及 52.N皇后 II
51. N皇后 问题描述 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后 ...
- ACM:回溯,八皇后问题,素数环
(一)八皇后问题 (1)回溯 #include <iostream> #include <string> #define MAXN 100 using namespace st ...
- 【Python】生成器、回溯和八皇后问题
八皇后问题: 把N个皇后,放在N*N的棋盘上面,从第一行往下放,每个皇后占一行,同时,每个皇后不能处在同一列,对角线上,有多少种放置方法. 思路: 典型的回溯问题: 1.当要放置最后一个皇后时候,默认 ...
- LeetCode 51. N-QueensN皇后 (C++)(八皇后问题)
题目: The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two que ...
随机推荐
- c++学习笔记(八)
内联函数 概念 内联(inline)函数是c++为提高程序运行速度所做得一项改进. 与常规函数的区别不在于编写方式,而在于被调用时的运行机制不同----编译器使用函数代码替换函数调用. 引用内联函数时 ...
- <C#任务导引教程>练习五
//27,创建一个控制台应用程序,声明两个DateTime类型的变量dt,获取系统的当前日期时间,然后使用Format格式化进行规范using System;class Program{ sta ...
- [第四篇] PostGIS:“我让PG更完美!”
概要 本篇文章主要分为几何图形处理函数.仿生变换函数.聚类函数.边界分析函数.线性参考函数.轨迹函数.SFCGAL 函数.版本函数这八部分. Geometry Processing ST_Buffer ...
- 学以致用 | Redis概念与简单实操
Redis概念 Redis是一个由C语言编写.基于key-value存储结构的开源NoSQL数据库,其读写速度为10万次/秒,这个速度已经远远大于传统的关系型数据库. 使用场景 在高并发的情况下,可将 ...
- NLP获取词向量的方法(Glove、n-gram、word2vec、fastText、ELMo 对比分析)
自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方 ...
- Atcoder Grand Contest 016 F - Games on DAG(状压 dp)
洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...
- 洛谷 P6783 - [Ynoi2008] rrusq(KDT+势能均摊+根号平衡)
洛谷题面传送门 首先显然原问题严格强于区间数颜色,因此考虑将询问离线下来然后用某些根号级别复杂度的数据结构.按照数颜色题目的套路,我们肯定要对于每种颜色维护一个前驱 \(pre\),那么答案可写作 \ ...
- Codeforces 1368H - Breadboard Capacity(最小割+线段树维护矩阵乘法)
Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 首先看到这种从某一种颜色 ...
- Atcoder Regular Contest 117 D - Miracle Tree(分析性质+构造)
Atcoder 题面传送门 笑死,阴间语文作业到现在还没写完,为了在这个点保持精神,我只好来颓篇题解辣 我们考虑探究一下怎么最小化 \(\max\limits_{i=1}^nE_i\),我们假设 \( ...
- 植物GO注释
本文主要是对没有GO term库的植物进行注释. 1.选用AgriGo 进行注释,在agriGO中点击species后,查看与你目标物种相近的物种作为库 2.比如我以甜菜为例 为了找到和GO term ...