【模型推理】Tengine 模型转换及量化
欢迎关注我的公众号 [极智视界],回复001获取Google编程规范
O_o
>_<
o_O
O_o
~_~
o_O
本文介绍一下 Tengine 模型转换及量化流程。
Tengine 同 ncnn 一样,也是优秀的端侧推理框架,前面写过一篇《ncnn 模型转换及量化流程》,有兴趣的同学可以查阅。
下面开始。
1、编译 Tengine Tools
CmakeList.txt 中打开 CONVERT_TOOL 和 QUANT_TOOL 开关:
开始编译:
cd <Tengine-path>
mkdir build
cd build
# 开始编译
camke ..
make -j32
make install
编译完会在 ./build/install/bin/
目录下生成 convert_tool
和 quant_tool
,如下:
2、Tengine 模型转换
用如下命令看一下 convert_tool
需要什么样的传参:
cd ./build/install/bin
./convert_tool -h
如上,前面为输入,后面为输出。
Tengine 提供的模型转换工具前端支持的十分丰富,基本通吃了国外、国内主流的深度学习框架。
前端为 Caffe:
./convert_tool -f caffe -p ./mobilenet.prototxt -m ./mobilenet.caffemodel -o ./mobilenet.tmfile
前端为 Onnx:
./convert_tool -f onnx -m ./mobilenet.onnx -o ./mobilenet.tmfile
前端为 Mxnet:
./convert_tool -f mxnet -p ./mobilenet.params -m ./mobilenet.json -o ./mobilenet.tmfile
前端为 Darknet:
./convert_tool -f darknet -p ./yolov3.weights -m ./yolov3.cfg -o yolov3.tmfile
前端为 TensorFlow:
./convert_tool -f tensorflow -m mobielenet_v1_1.0_224_frozen.pb -o mobilenet.tmfile
前端为 TFLite:
./convert_tool -f tflite -m mobielenet.tflite -o mobilenet.tmfile
前端为 MegEngine:
./convert_tool -f megengine -m mobilenet.pkl -o mobilenet.tmfile
前端为 OneFlow:
./convert_tool -f oneflow -p mobilenet.prototxt -m mobilenet/ -o mobilenet.tmfile
前端为 ncnn:
./convert_tool -f ncnn -p mobilenet.param -m mobilenet.bin -o mobilenet.tmfile
3、Tengine 量化推理
可以看到 Tengine 提供的量化工具有三个:quant_tool_int8
、quant_tool_uint8
、quant_tool_uint8_perchannel
,分别是对称量化、非对称量化、非对称逐通道量化,里面的量化策略类似,这里挑 quant_tool_int8
说一下。
先安装一下依赖库:
apt update
apt install libopencv-dev
用如下命令查看量化工具传参:
./quant_tool_int8 -h
可以看到传参还是比较丰富的。
前端输入为 fp32 tmfile,执行量化示例:
./quant_tool_int8 -m ./mobilenet_fp32.tmfile -i ./dataset -o ./mobilenet_int8.tmfile -g 3,224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017
执行成功会输出如下日志:
并生成如下 int8 模型文件:
然后就可以拿去执行推理了。
以上分享了 Tengine 模型转换及量化方法,希望我的分享能对你的学习有一点帮助。
【公众号传送】
【模型推理】Tengine 模型转换及量化的更多相关文章
- 【模型推理】量化实现分享一:详解 min-max 对称量化算法实现
欢迎关注我的公众号 [极智视界],回复001获取Google编程规范 O_o >_< o_O O_o ~_~ o_O 大家好,我是极智视界,本文剖析一下 m ...
- 【模型推理】量化实现分享二:详解 KL 对称量化算法实现
欢迎关注我的公众号 [极智视界],回复001获取Google编程规范 O_o >_< o_O O_o ~_~ o_O 大家好,我是极智视界,本文剖析一下 K ...
- 【模型推理】量化实现分享三:详解 ACIQ 对称量化算法实现
欢迎关注我的公众号 [极智视界],回复001获取Google编程规范 O_o >_< o_O O_o ~_~ o_O 大家好,我是极智视界,本文剖析一下AC ...
- 【翻译】借助 NeoCPU 在 CPU 上进行 CNN 模型推理优化
本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的 "Optimizing CNN Model Inference on CPUs" 原文链接: h ...
- 天猫精灵业务如何使用机器学习PAI进行模型推理优化
引言 天猫精灵(TmallGenie)是阿里巴巴人工智能实验室(Alibaba A.I.Labs)于2017年7月5日发布的AI智能语音终端设备.天猫精灵目前是全球销量第三.中国销量第一的智能音箱品牌 ...
- MindSpore模型推理
MindSpore模型推理 如果想在应用中使用自定义的MindSpore Lite模型,需要告知推理器模型所在的位置.推理器加载模型的方式有以下三种: 加载本地模型. 加载远程模型. 混合加载本地和远 ...
- 移动端 CPU 的深度学习模型推理性能优化——NCHW44 和 Record 原理方法详解
用户实践系列,将收录 MegEngine 用户在框架实践过程中的心得体会文章,希望能够帮助有同样使用场景的小伙伴,更好地了解和使用 MegEngine ~ 作者:王雷 | 旷视科技 研发工程师 背景 ...
- 前端1-----CSS颜色属性,字体文本和背景属性,边框属性,margin和padding,盒模型,行内块转换,浮动,三大定位
前端1-----CSS颜色属性,字体文本和背景属性,边框属性,margin和padding,盒模型,行内块转换,浮动,三大定位 一丶css选择器的优先级 行内 > id选择器 > 类选择器 ...
- 一款超级好用的3Dmax模型插件 支持模型多格式批量转换
对于模型设计师来说模型格式转换是最常见的事,但是每一款建模软件所支持的格式各有不同,模型互导操作太麻烦 为了解决这个难题,老子云平台研发了一款基于3dmax软件的模型格式转换插件,支持多种模型格式想换 ...
随机推荐
- FZU ICPC 2020 寒假训练 1
B - Sum Problem In this problem, your task is to calculate SUM(n) = 1 + 2 + 3 + ... + n. Input The i ...
- 大爽Python入门教程 2-5 *拓展实践,对比与思考
大爽Python入门公开课教案 点击查看教程总目录 本文偏难. 推荐等第一二三四章上完后,回过来拓展阅读. 基础情景思考 假设有这样一张成绩表 最左边的一列是名字,起名麻烦. 这里直接用ABC...来 ...
- SCTL 涅槃重生:投入 RAL 的怀抱
在<DistSQL:像数据库一样使用 Apache ShardingSphere>一文中,PMC 孟浩然为大家介绍了 DistSQL 的设计初衷和语法体系,并通过实战操作展示了一条 SQL ...
- python实现图像直方图
目录: (一)直方图的使用 正文: (一)直方图的使用 1 from matplotlib import pyplot as plt 2 def plot_demo(image): 3 print(i ...
- Maven 依赖调解源码解析(一):开篇
本文是系列文章<Maven 源码解析:依赖调解是如何实现的?>第一篇,主要做个开头介绍.并为后续的实验做一些准备.系列文章总目录参见:https://www.cnblogs.com/xia ...
- java中static关键字的解析
静态的特点: A:随着类的加载而加载 B:优先于对象而存在 C:静态是被所有对象共享的数据 这也是我们来判断是否使用静态的标准 D:静态的出现,让我们的调用方式多了一种 类名.静态的内容 非静态的内容 ...
- springbootjpa的dao层也会出现找不到javabean的操作
使用jpa的过程中,有一次使用dao写了一个 SysCompany findByName(String name);但实体类中没有name这个属性就会报错.bean注入异常
- Gin 如何动态生成模型 swagger 文档
在做 API 接口开发时, 一般会统一 API 返回格式, 例如 { "code": 200, "data": { //xxxxx //xxxxx }, &qu ...
- 探索JavaScript执行机制
前言 不论是工作还是面试,我们可能都经常会碰到需要知道代码的执行顺序的场景,所以打算花点时间彻底搞懂JavaScript的执行机制. 如果这篇文章有帮助到你,️关注+点赞️鼓励一下作者,文章公众号首发 ...
- 洛谷 P4183 - [USACO18JAN]Cow at Large P(点分治)
洛谷题面传送门 点分治 hot tea. 首先考虑什么样的点能够对以 \(u\) 为根的答案产生 \(1\) 的贡献.我们考虑以 \(u\) 为根对整棵树进行一遍 DFS.那么对于一个点 \(v\), ...