HDU 6116 路径计数
HDU 6116 路径计数
普通生成函数常用于处理组合问题,指数生成函数常用于处理排列问题。
考虑 对于 $ a $ 个 $ A $ 分为很多堆,这么分的方案数是 $ C_{a-1}^{i-1} $
然后对于每一堆我们看成一个数来放,并且所有堆都这样做,这样的话总的方案数量是 $ \frac{(i+j+k+l)!}{i!j!k!l!} $
就算所有一堆看成的数的排列是不存在相邻相等的,至少都有 $ n-i-j-k-l $ 对相邻的相同的数。
然后就可以容斥了,枚举 $ i+j+k+l $ 直接计算就好了。
$ ans = \displaystyle \sum_{x=1}^{n} (-1)^{n-x} x! \sum_{i+j+k+l=x} \frac{C_{a-1}^{i-1} C_{b-1}^{j-1} C_{c-1}^{k-1} C_{d-1}^{l-1}}{i ! j ! k ! l !} $
后面其实就是四个指数生成函数乘积了。
#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010
#define P 998244353
#define clr( a ) memset( a , 0 , sizeof a )
typedef long long ll;
int wn[2][MAXN];
int Pow( int x , int y ) {
int res=1;
while(y) {
if(y&1) res=res*(ll)x%P;
x=x*(ll)x%P,y>>=1;
}
return res;
}
void getwn(int l) {
for(int i=1;i<(1<<l);i<<=1) {
int w0=Pow(3,(P-1)/(i<<1)),w1=Pow(3,P-1-(P-1)/(i<<1));
wn[0][i]=wn[1][i]=1;
for(int j=1;j<i;++j)
wn[0][i+j]=wn[0][i+j-1]*(ll)w0%P,
wn[1][i+j]=wn[1][i+j-1]*(ll)w1%P;
}
}
int rev[MAXN];
void getr(int l) { for(int i=1;i<(1<<l);++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l-1); }
void NTT(int *A,int len,int f) {
for(int i=0;i<len;++i) if(rev[i]<i) swap(A[i],A[rev[i]]);
for(int l=1;l<len;l<<=1)
for(int i=0;i<len;i+=(l<<1))
for(int k=0;k<l;++k) {
int t1=A[i+k],t2=A[i+l+k]*(ll)wn[f][l+k]%P;
A[i+k]=(t1+t2)%P;
A[i+l+k]=(t1-t2+P)%P;
}
if( f == 1 ) for(int inv=Pow(len,P-2),i=0;i<len;++i) A[i]=A[i]*(ll)inv%P;
}
int a , b , c , d;
int J[MAXN] , invJ[MAXN] , inv[MAXN];
int cc( int a , int b ) {
if( b > a ) return 0;
return 1ll * J[a] * invJ[b] % P * invJ[a - b] % P;
}
int A[MAXN] , B[MAXN] , C[MAXN] , D[MAXN];
int main() {
J[0] = inv[1] = invJ[0] = J[1] = invJ[1] = 1;
for( int i = 2 ; i < MAXN ; ++ i ) inv[i] = 1ll * ( P - P / i ) * inv[P % i] % P , J[i] = 1ll * J[i - 1] * i % P , invJ[i] = 1ll * invJ[i - 1] * inv[i] % P;
while( cin >> a >> b >> c >> d ) {
clr( A ) , clr( B ) , clr( C ) , clr( D );
int n = a + b + c + d;
for( int i = 1 ; i <= a ; ++ i ) A[i] = 1ll * cc( a - 1 , i - 1 ) * invJ[i] % P;
for( int i = 1 ; i <= b ; ++ i ) B[i] = 1ll * cc( b - 1 , i - 1 ) * invJ[i] % P;
for( int i = 1 ; i <= c ; ++ i ) C[i] = 1ll * cc( c - 1 , i - 1 ) * invJ[i] % P;
for( int i = 1 ; i <= d ; ++ i ) D[i] = 1ll * cc( d - 1 , i - 1 ) * invJ[i] % P;
int len = 1 , l = 0;
while( len <= n ) len <<= 1 , ++ l;
getwn( l ) , getr( l );
NTT( A , len , 0 ) , NTT( B , len , 0 ) , NTT( C , len , 0 ) , NTT( D , len , 0 );
for( int i = 0 ; i < len ; ++ i ) A[i] = 1ll * A[i] * B[i] % P * C[i] % P * D[i] % P;
NTT( A , len , 1 );
ll res = 0;
for( int i = 1 ; i <= n ; ++ i )
res += ( ( n - i & 1 ) ? -1ll : 1ll ) * J[i] * A[i] % P , res += P , res %= P;
cout << res << endl;
}
}
HDU 6116 路径计数的更多相关文章
- hdu 5868 Polya计数
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
- 51 nod 1610 路径计数(Moblus+dp)
1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一 ...
- hdu 2865 Polya计数+(矩阵 or 找规律 求C)
Birthday Toy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 蓝桥杯 历届试题 网络寻路(dfs搜索合法路径计数)
X 国的一个网络使用若干条线路连接若干个节点.节点间的通信是双向的.某重要数据包,为了安全起见,必须恰好被转发两次到达目的地.该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径 ...
- 堆优化Dijkstra计算最短路+路径计数
今天考试的时候遇到了一道题需要路径计数,然而蒟蒻从来没有做过,所以在考场上真的一脸懵逼.然后出题人NaVi_Awson说明天考试还会卡SPFA,吓得我赶紧又来学一波堆优化的Dijkstra(之前只会S ...
- 【洛谷】P1176: 路径计数2【递推】
P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N),即右下角有多少种方法. 但是这个问题太简单了,所以 ...
- hdu 6010 路径交
hdu 6010 路径交(lca + 线段树) 题意: 给出一棵大小为\(n\)的树和\(m\)条路径,求第\(L\)条路径到第\(R\)条路径的交的路径的长度 思路: 本题的关键就是求路径交 假设存 ...
- 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学
牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...
- 洛谷——P1176 路径计数2
P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...
随机推荐
- EMC测试国家标准GB/T 17626
转载: 详解EMC测试国家标准GB/T 17626 - whik - 博客园 (cnblogs.com)
- python jinja2初见
吸取了长城杯的教训,学习python-web迫在眉睫. 正常难度的python_template_injection,由于现在没学面向对象,理解原理比较困难,所以先使用简单版复现:并附上正常版的常用p ...
- 【Java虚拟机8】自定义类加载器、类加载器命名空间、类的卸载
前言 学习类加载器就一定要自己实现一个类加载器,今天就从一个简单的自定义类加载器说起. 自定义类加载器 例1 一个简单的类加载器,从一个给定的二进制名字读取一个字节码文件的内容,然后生成对应的clas ...
- ubuntu20.04 使用root用户登录
1.设置root用户密码 执行 sudo passwd root 然后输入设置的密码,输入两次,这样就完成了设置root用户密码了 2.修改配置文件 执行 sudo vim /usr/share/li ...
- VS Code Remote SSH设置
本文翻译自:5 Steps: Setup VS Code for Remote Development via SSH from Windows to Linux system 5个步骤:设置VS代码 ...
- 微信小程序实现tabs选项卡
选项卡在我们的日常开发中,使用的还是蛮多的,但是微信小程序中却没有直接提供选项卡组件,不过我们可以变通通过 scroll-view 和 swiper 组件来实现一个选项卡的功能. 需求: 实现一个选项 ...
- STM32中断编程三步曲教你弄会中断设置以及中断优先级设置
中断作为stm32中必不可少的一个功能,其重要性是不言而喻的因此把中断学习好是根本. 所以今天就来好好啃一下中断配置的知识,俗话说:磨刀不误砍柴工.问题是什么呢?项目中我用到了一个触摸键盘TTP229 ...
- golang常用库:cli命令行/应用程序生成工具-cobra使用
golang常用库:cli命令行/应用程序生成工具-cobra使用 一.Cobra 介绍 我前面有一篇文章介绍了配置文件解析库 Viper 的使用,这篇介绍 Cobra 的使用,你猜的没错,这 2 个 ...
- Oracle创建表、删除表、修改表、字段增删改 语句总结
创建表: create table 表名 ( 字段名1 字段类型 默认值 是否为空 , 字段名2 字段类型 默认值 是否为空, 字段名3 字段类型 默认值 是否为空, ...... ); 创建一个us ...
- svg的animate动画动态加载删除遇到删除animate后再次加载的animate动画没有效果问题
svg上有多个圆圈,当选中特定圆圈后给其加上animate动画效果,并把其他圆圈的animate效果去除. 第一次选择一个点实现动画效果完全达到效果,因为是第一次所以不需要把其他圆圈的animate子 ...