正题

题目链接:https://www.luogu.com.cn/problem/P3348


题目大意

有\(n\)棵树开始只有一个编号为\(1\)的节点且为标记点。\(m\)次操作要求支持

  1. 在\(l\sim r\)的树中的标记点下面加入一个新的编号的节点
  2. 将\(l\sim r\)的树上的标记点改为\(x\)(如果没有节点\(x\)就不操作)
  3. 询问第\(x\)棵树上\(u\)点到\(v\)点的距离

\(1\leq n\leq 10^5,1\leq m\leq 2\times 10^5\)

保证询问合法


解题思路

保证询问合法的话我们其实第一个操作理解为对所有树都操作就可以了。主要是第二个操作,在线区间\(LCT\)看起来就很不可做,所以考虑离线。

对于一个操作\(1\ l\ r\ x\)它会对\(l-1\)和\(l\)的树造成的影响是再往后直到下一个\(1\)操作之间所有的节点都会被接到不同的点下面。但是显然暴力改接是不行的,我们可以考虑对于两个\(1\)操作之间的\(0\)操作建立一个虚点下面链接的所有这个区间新建的点,然后每次就改接一个虚点就好了。

然后需要注意的一些细节:因为根是固定的不能用\(split\),会破坏父子关系(好像在\(makeroot(1)\)回去可以,但是据说很慢?),所以要差分求到根节点的路径长度。还要求\(lca\),\(LCT\)上求\(lca\)的话就\(access\)了\(x\)再到\(y\)最后\(Splay\)的那个\(y\)就是\(lca\)了。

还有因为如果没有节点\(x\)就不操作,所以我们需要记录一下每个点拥有的树的区间然后取一个交集就好了。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+10;
struct node{
int x,l,r,id;
}q[N],c[N];
int n,m,num,cnt,ct,qt;
int L[N],R[N],ans[N],at[N];
struct LCT{
int fa[N],t[N][2],siz[N],v[N];
bool Nroot(int x)
{return fa[x]&&(t[fa[x]][0]==x||t[fa[x]][1]==x);}
bool Direct(int x)
{return t[fa[x]][1]==x;}
void PushUp(int x){
siz[x]=siz[t[x][0]]+siz[t[x][1]]+v[x];
return;
}
void Rotate(int x){
int y=fa[x],z=fa[y];
int xs=Direct(x),ys=Direct(y);
int w=t[x][xs^1];
if(Nroot(y))t[z][ys]=x;
t[x][xs^1]=y;t[y][xs]=w;
if(w)fa[w]=y;fa[y]=x;fa[x]=z;
PushUp(y);PushUp(x);return;
}
void Splay(int x){
while(Nroot(x)){
int y=fa[x];
if(!Nroot(y))Rotate(x);
else if(Direct(x)==Direct(y))
Rotate(y),Rotate(x);
else Rotate(x),Rotate(x);
}
return;
}
int Access(int x){
int y=0,px=x;
for(;x;y=x,x=fa[x])
Splay(x),t[x][1]=y,PushUp(x);
Splay(px);return y;
}
void Link(int x,int y)
{Splay(x);fa[x]=y;return;}
void Cut(int x)
{Access(x);fa[t[x][0]]=0;t[x][0]=0;PushUp(x);return;}
}T;
bool cmp(node x,node y)
{return x.x<y.x;}
int main()
{
scanf("%d%d",&n,&m);
L[1]=cnt=at[1]=1;R[1]=n;
T.Link(2,1);cnt=2;int last=2,num=1,aux=2;
for(int i=1;i<=m;i++){
int op,l,r,x;
scanf("%d%d%d",&op,&l,&r);
if(op==0){
++num;at[num]=++cnt;
T.v[cnt]=T.siz[cnt]=1;
T.Link(cnt,aux);
L[num]=l;R[num]=r;
}
else if(op==1){
scanf("%d",&x);
l=max(l,L[x]);r=min(r,R[x]);
if(l>r)continue;
++cnt;T.Link(cnt,aux);
c[++ct]=(node){l,cnt,at[x]};
c[++ct]=(node){r+1,cnt,aux,0};
aux=cnt;
}
else{
scanf("%d",&x);
q[++qt]=(node){l,at[r],at[x],qt};
}
}
sort(q+1,q+1+qt,cmp);
sort(c+1,c+1+ct,cmp);
for(int i=1,z=1;i<=qt;i++){
int sum=0;
while(z<=ct&&c[z].x<=q[i].x)
T.Cut(c[z].l),T.Link(c[z].l,c[z].r),z++;
T.Access(q[i].l);sum+=T.siz[q[i].l];
int lca=T.Access(q[i].r);sum+=T.siz[q[i].r];
T.Access(lca);sum-=2*T.siz[lca];
ans[q[i].id]=sum;
}
for(int i=1;i<=qt;i++)
printf("%d\n",ans[i]);
return 0;
}

P3348-[ZJOI2016]大森林【LCT】的更多相关文章

  1. 洛谷P3348 [ZJOI2016]大森林 [LCT]

    传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...

  2. [ZJOI2016]大森林(LCT)

    题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y掌握了一种 ...

  3. P3348 [ZJOI2016]大森林

    \(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...

  4. 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)

    洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...

  5. P3348 [ZJOI2016]大森林(LCT)

    Luogu3348 BZOJ4573 LOJ2092 题解 对于每个\(1\)操作建一个虚点,以后的\(0\)操作都连在最近建好的虚点上.这样每次整体嫁接的时候,直接把这个虚点断掉它原来的父亲,再\( ...

  6. ●洛谷P3348 [ZJOI2016]大森林

    题链: https://www.luogu.org/problemnew/show/P3348 题解: LCT,神题 首先有这么一个结论: 每次的1操作(改变生长点操作),一定只会会对连续的一段区间产 ...

  7. bzoj 4573: [Zjoi2016]大森林 lct splay

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 http://blog.csdn.net/lych_cys/article/details/5 ...

  8. P3348 [ZJOI2016]大森林(Link-cut-tree)

    传送门 题解 题面大意: \(0.\)区间加节点 \(1.\)区间换根 \(2.\)单点询问距离 如果没有\(1\)操作,因为区间加节点都是加在下面,所以我们可以直接把\(n\)棵树压成一棵树,直接询 ...

  9. BZOJ4573:[ZJOI2016]大森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 https://www.luogu.org/problemnew/show/P3348#sub ...

  10. [ZJOI2016]大森林

    Description: 小Y家里有一个大森林,里面有n棵树,编号从1到n 0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例 ...

随机推荐

  1. Mooc中国大学Python学习笔记--数字类型及操作

    整数类型 只需知道整数无限制,pow(),4进制表示形式 与数学中整数的概念一致 --可正可负,没有取值范限制 --pow(x,y)函数:计算x^y,想算多大算多大 -十进制:10 -二进制,以0b或 ...

  2. JDBC中级篇(MYSQL)——处理大文本(CLOB)

    注意:其中的JdbcUtil是我自定义的连接工具类:代码例子链接: package b_blob_clob; import java.io.FileNotFoundException; import ...

  3. 多线程编程<一>

    1 /** 2 * 通过制定synchronized限定符,可以同步用于对象的一个或多个方法.当调用同步的方法时,对象会被加锁,直到方法返回. 3 * @author Burke 4 * 5 */ 6 ...

  4. HuaWeiJava 上机

    1 /* 2 * 第二题,输入字符串长度,字符串,计数m.从前往后计数,当数到m个元素时,m个元素出列,同时将该元素赋值给m, 3 * 然后从下一个数计数循环,直到所有数字都出列,给定的数全部为大于0 ...

  5. Java第一阶段项目实训

    时间:2016-3-27 17:09 银行综合业务平台业务需求 1.首页  ---------------银行综合业务平台------------------- 1开户     2登录    3.退出 ...

  6. 刷题-力扣-113. 路径总和 II

    113. 路径总和 II 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/path-sum-ii 著作权归领扣网络所有.商业转载请联系 ...

  7. jdbc操作mysql(二):封装

    案例四:封装共有操作 封装一个数据库的会话的类 import java.sql.*; public class ConnectionUtil { /** * 获取连接对象的方法,返回一个Connect ...

  8. 每天迁移MySQL历史数据到历史库Python脚本

    #!/usr/bin/env python # coding:utf-8 #__author__ = 'Logan'      import MySQLdb import sys import dat ...

  9. MySQL-LSN

    查看lsn:   show engine innodb status Log sequence number 2687274848548    Log flushed up to 2687274848 ...

  10. leaflet加载离线OSM(OpenStreetMap)

    本文为博主原创,如需转载需要署名出处. leaflet作为广为应用的开源地图操作的API,是非常受欢迎,轻量级的代码让使用者更容易操作. 废话不多说,下面直接给出范例. 首先在这个网站下载leafle ...