这些操作在网上都可以百度得到,为了便于记忆自己再根据理解总结在一起。---------励志做一个优雅的网上搬运工

1.建立dataframe

(1)Dict to Dataframe

df = pd.DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)})
df
data1 data2 key1 key2
0 -0.484486 -1.404184 a one
1 -1.541437 0.549591 a two
2 -0.015287 -1.589111 b one
3 -0.069614 -0.513824 b two
4 -0.704788 0.395147 a one

(2)Series to Dataframe

df2=pd.DataFrame(np.arange(16).reshape((4,4)),index=['one','two','three','four'],columns=['a','b','c','d'])
df2
a b c d
one 0 1 2 3
two 4 5 6 7
three 8 9 10 11
four 12 13 14 15

(3)pd.read_csv()  ; pd.to_csv();

         pd.read_excel() ; pd.to_excel()

(4)建立一个新的空的dataframe

df_empty = pd.DataFrame(columns=['A', 'B', 'C', 'D'])  

列表生成器

[x for x in range(0,5)]
[0, 1, 2, 3, 4]

2.dataframe基本操作

(1)逻辑运算取行数:df[df['data1']>0]

(2)规则运算取行数:

df2.loc[[2]]
data1 data2 key1 key2
2 0.025434 0.119642 b one
df2.iloc[[2]]
data1 data2 key1 key2
2 0.025434 0.119642 b one

  一个是按照index的序值,一个是按照index具体值

取前两行:df[:,2]

(3)取指定的几列

df = df[0:(len(df) - 1)] # 取df的前n-1行
取某两列:df[[column1,column2]]
不指定列名取前四百列:df.iloc[:,0:400] (4)取满足条件的几行

yy=data[(data['Ch']==8027)& (data['PlaceNo']==6)]

df.loc[(df['AxleNo'] == 5) & (df['PlaceNo'] == 1) & (df['ResultMark'].isin([4,196,1028, 16388])), 'Alarm'] = 7 # 修改满足条件行的

(5)按列拼接

https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-6-pd-concat/

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False,
copy=True)
pd.concat([df2,df2],axis=0)

objs:待合并的对象集合,可以是Serice,Dataframe

axis:{0,1,...}合并方向,默认为0,表示纵向,1表示横向

join:{inner,outer}:合并方式,默认为outer,表示并集,inner表示交集

join_axes:按哪些对象的索引保存

ignore_index:{False,True},是否忽略原index,默认为不忽略

keys:为原始dataframe添加一个键,默认为无

ndarray的拼接,np.vstack((a,b));

np.hstack((a,b))

merge方法同样可实现,merge(df1,df2),没有指定连接列名默认将重复的列当作键

merge(df1,df2,on=['key1','key2'])

merge(df1,df2,rigth_on=,left_on=)当列名不相同时同样可以进行合并

删除重复的行

df.drop_duplicates()      #删除所有列完全重合的行

df.drop_duplicates(['key1','key2'])    #删除列1和列2重复的行

(6)按行拼接

result = df1.append(df2)

(7)修改索引

# inplace=Ture,在DataFrame上修改数据,而不是返回一个新的DataFrame
df1.reindex(['a','b','c','d','e'], inplace=Ture)
修改列的排列顺序
df1.reindex(columns=columns)

 x=x.reset_index() #将索引从新排列,但是会自动生成原来索引内容的index一列

3.groupby

(1)按照关键字分类,如果不使用mean().sum()函数的话,是一个group类型的数据

df2 = pd.DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)})
df2.groupby('key1').mean()
data1 data2
key1
a 0.067198 0.650162
b 0.040813 0.126698
df2.groupby(['key1','key2']).mean()
data1 data2
key1 key2
a one 0.373335 0.944841
two -0.545078 0.060804
b one 0.025434 0.119642
two 0.056192 0.133754

补上df2

df2
data1 data2 key1 key2
0 -0.511381 0.967094 a one
1 -0.545078 0.060804 a two
2 0.025434 0.119642 b one
3 0.056192 0.133754 b two
4 1.258052 0.922588 a one

(2)对group数据再进行函数操纵apply(),agg()

apply()应用所有数据

df2.groupby('key1').apply(np.mean)
data1 data2
key1
a 0.067198 0.650162
b 0.040813 0.126698

    agg()应用某一列

group2=df2.groupby('key1')
group2
<pandas.core.groupby.DataFrameGroupBy object at 0x000001C6A964D518>
group2['data1'].agg('mean')
key1
a 0.067198
b 0.040813

3.组合合并

(1)dataframe中其中两列按照一定格式合并并生成新的一列

df['经纬度']=df[['经度','纬度']].apply(lambda x:"{:.3f},{:.3f}".format(*x),axis=1)

Temp_data['轴位']=Temp_data['轴号'].map(str)+Temp_data['位号'].map(str)

(2)两个dataframe表通过字段进行匹配组合成新表

1.merge方法

pandas.merge(df1,df2,on=['key1','key2'],how=‘inner’)

how有inner、outer、left和right四个选项,分别表示并集,交集,按左连接和按右链接,默认为inner

2.combin方法

3.join方法

4.concat方法

pandas.concat([df1,df2,df3])是默认在纵向堆叠,列数不会增加。

pandas.concat([df1,df2,df3],axis=1,join='inner')会把每个DataFrame的列放在一起,按index识别

4.pivot_table 透视表

pd.pivot_table(df2, index='key1', columns='key2')
data1 data2
key2 one two one two
key1
a 0.373335 -0.545078 0.944841 0.060804
b 0.025434 0.056192 0.119642 0.133754

 

df2.pivot_table(['data1'], index='key1',columns='key2')
data1
key2 one two
key1
a 0.373335 -0.545078
b 0.025434 0.056192

5.其他

(1)编码

系统自动编码:y = np.array(pd.Categorical(data['quality']).codes)

自己指定映射:data['category'] = data['quality'].map({"轻度污染":1,"中度污染":2})

(2)替换

c = df['AreaId'].replace(-1, 0) 将AreaId一列中-1的数替换成0
c = df['AreaId'].replace([-1,2,4,8], 0) 将AreaId一列中某些数据替换成0

(3)更改列名字

df = df.rename(columns={'DeviceName_湿度_DataValue_Mean_Mean': '湿度'})
(4)排序
df.sort_index(inplace=True) #将index排序
df=df.sort_index(by='timepoint') # index后续会被values替代,这两行都是对dataframe中某一列进行排序
df=df.sort_values(by='timepoint')
(5)更改列的数据类型
修改整个数据框类型:df=pd.DataFrame(df,dtype='float').replace(0,np.nan).mean(1)
mean(1)是求行平均, (6)其他地方收集到的神操作

if df['实发工资']>10000:
    df['实发工资']=df['应发工资']+20000

df['实发工资'] = df['应发工资'].applay(lambda x:x+20000 if x>10000 else x)

(7)根据列的值从DataFrame中选择行

要选择列的值等于某个值"some_value"的行,请使用==

df.loc[df['column_name'] == some_value]

要选择列值在链表some_values中的行,请使用isin

df.loc[df['column_name'].isin(some_values)]

将多个条件与&组合使用:

df.loc[(df['column_name'] == some_value) & df['other_column'].isin(some_values)]

要选择列值不等于some_value的行,请使用!=

df.loc[df['column_name'] != some_value]

isin返回一个布尔序列,因此要选择其值不在some_values中的行,使用~取反布尔序列:

df.loc[~df['column_name'].isin(some_values)]

(8)dataframe根据多列的条件判断生成新的一列

df['temp_tag']=df.apply(lambda x: (1 if x['12']-x['Ireference']>=55 else 0), axis=1)

df['次高温差'] =df.apply(lambda x:(max(x['12'],x['22'],x['32'],x['42'],x['52'],x['62'])-np.sort([x['12'],x['22'],x['32'],x['42'],x['52'],x['62']])[4]),axis=1)

6.读取文件

可查看原网站地址:https://i.cnblogs.com/EditPosts.aspx?postid=8323763

1.读取excel

import pandas as pd
from pandas import DataFrame,Series # 指定分隔符,也可用delimiter,读取前10行数据
pd.read_table('filename', sep=',',nrows=10)
# 读取特定大小的文件块(byte)
pd.read_table('filename', chunksize=1000) # 读入DataFrame时,指定列名
pd.read_csv('filename', header=None)
pd.read_csv('filename', names=['a','b','c','d']) # 指定列为索引,列d设为索引
pd.read_csv('filename', names=['a','b','c','d'], index_col='d')
# 层次化索引的话,可以index_col指定多个列名
pd.read_csv('filename', names=['a','b','c','d'], index_col=['c','d']) # 跳过文件的某些行
pd.read_csv('filename', skiprows=[1,3,6])
# 需要忽略的行数,从尾部算起
pd.read_csv('filename', skip_footer=10) # 读文件缺失值处理,将文件中某些值设置为nan
pd.read_csv('filename', na_values=['NULL'])
# 将文件中满足box条件的值设置为nan
box = {'col1':['foo','NA'], 'col3':['two']}
pd.read_csv('filename', na_values=['NULL'])
# 写文件缺失值处理,将nan写成na_rep
pd.read_csv('filename', na_rep='NULL') # 日期解析,解析所有列,也可以指定,默认为False;
# 冲突型日期,看成国际标准格式,28/6/2016, 默认为False
pd.read_csv('filename', parse_dates=True, dayfirst=True) # 设置编码,数据解析后仅有一列返回Series
pd.read_csv('filename', encoding='utf-8', squeeze=True)

3.导出文件

#导出到CSV:
df.to_csv('SomeTable.csv', index=False)
df.to_csv('SomeTable.csv', index=False)
#导出到EXCEL:
df.to_excel('SomeTable.xls', index=False)
df.to_excel('SomeTable.xls', index=False)
#导出到TXT:
df.to_csv('SomeTable.txt', index=False)
df.to_csv('SomeTable.txt', index=False)

 str转list可通过str.split(',')

list 转str可通过a = ','.join(['abc','def','ghi'])    >>>'abc,def,ghi',值得注意的是list里面的数据必须是字符串类型才可以

DataFrame基本操作的更多相关文章

  1. python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

  2. 用python做数据分析pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataF ...

  3. pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构的基本操作 ...

  4. 用python做数据分析4|pandas库介绍之DataFrame基本操作

    原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构 ...

  5. 机器学习三剑客之Pandas中DataFrame基本操作

    Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷 ...

  6. pd库dataframe基本操作

    一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行 a=DataFrame(data); a.head(6)表示显示前6行数据,若head()中不 ...

  7. pyspark SparkSession及dataframe基本操作

    from pyspark import SparkContext, SparkConf import os from pyspark.sql.session import SparkSession f ...

  8. dataframe 基本操作

    package com.jason.example import org.apache.spark.sql.functions.broadcast class DFTest extends Spark ...

  9. python数据类型之pandas—DataFrame

    DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 ...

随机推荐

  1. 20162322 朱娅霖 作业011 Hash

    20162322 2017-2018-1 <程序设计与数据结构>第十一周学习总结 教材学习内容总结 哈希方法 一.定义 哈希:次序--更具体来说是项在集合中的位置--由所保存元素值的某个函 ...

  2. Linux知识扩展二:lsof命令

    转:https://www.cnblogs.com/the-study-of-linux/p/5501593.html 1. lsof :list open file 显示linux下打开的文件信息. ...

  3. spring整合kafka(配置文件方式 生产者)

    Kafka官方文档有   https://docs.spring.io/spring-kafka/reference/htmlsingle/ 这里是配置文件实现的方式 先引入依赖 <depend ...

  4. C++字符串结束标识

    用一个字符数组可以存放一个字符串中的字符.如: char str[12]={'I',' ','a','m',' ','h','a','p','p','y'}; 用一维字符数组str来存放一个字符串″I ...

  5. linux rescue 修复引导 与linux下修复windows引导

    在windows有引导的情况下修复linux引导 插入U盘启动 进入rescue模式 fdisk -l 查看分区情况 chroot /mnt/sysimage/ 进入系统 grub-install / ...

  6. GUI设计和UI设计有什么区别?

    首先从技术的角度分析两者处于包含与被包含的关系. GUI=Graphical User Interface,是指在计算机出现后,在屏幕上使用图形界面来帮助(User)与机器打交道用的界面接口,泛指在计 ...

  7. JS基础-数组的常用方法-冒泡排序

    1.数组  1.关联数组    以数字作为元素下标的数组,就是索引数组.    以字符串作为元素下标的数组,就是关联数组.  2.js的关联数组    ex:在php中       $array=[& ...

  8. C++标准库之右值引用与交付语义

    C++标准委员会不应该制定一条阻止程序员拿起枪朝自己的脚丫子开火的规则. 右值引用(rvalue).交付语义(move) 最近阅读<C++标准库第二版>,看到第二章介绍C++11新特性3. ...

  9. websocket的简单使用

    一 轮询 什么是轮询:设置每一段时间去访问一次服务器,然后服务器返回最新的数据.这样服务器的压力会非常的大,并且还会有延迟.适用于小型程序. 实现:再客户端的页面设置一个定时发送请求的任务,每个这段时 ...

  10. spring深入学习(五)-----spring dao、事务管理

    访问数据库基本是所有java web项目必备的,不论是oracle.mysql,或者是nosql,肯定需要和数据库打交道.一开始学java的时候,肯定是以jdbc为基础,如下: private sta ...