比较简单的莫队题,主要是为了熟练板子。

先考虑固定区间时我们怎么计算,假设区间\([l,r]\)内颜色为\(i\)的袜子有\(cnt_i\)只,那么对于颜色\(i\)来说,凑齐一双的情况个数为:

  • \(cnt_i=0\)时,贡献为\(0\),这个我们特别处理(显然吧)
  • \(cnt_i>0\)时,贡献为\(cnt_i\cdot (cnt_i-1)\) (先挑出一只再挑另一只)

最后我们考虑所有颜色以及总情况数,那么此时凑出一双概率为:

\[\frac{\sum cnt_i\cdot(cnt_i-1)}{(r-l+1)\cdot(r-l-2)}
\]

首先还是考虑如何快速地转移区间,假设我们已经求出了\([l,r]\)的贡献(即上式的分母部分)\(ans\),那么我们考虑:

  • 推出\([l-1,r],[l,r+1]\)。假设此时加入的袜子颜色为\(i\),那么\(ans=ans-cnt_i\cdot(cnt_i-1)+cnt_i\cdot(cnt_i+1)\)
  • 推出\([l+1,r],[l,r-1]\)。假设此时加入的袜子颜色为\(i\),那么\(ans=ans-cnt_i\cdot(cnt_i-1)+(cnt_i-2)\cdot(cnt_i-1)\)

然后就可以\(O(1)\)转移啦,剩下的就是莫队基本操作了

CODE

#include<cstdio>
#include<cctype>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=50005;
struct data
{
int l,r,id;
long long ans1,ans2;
}q[N];
int n,m,L,R,a[N],cnt[N],blk[N],size;
long long res;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(long long x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline bool cmp1(data a,data b)
{
if (blk[a.l]==blk[b.l]) return blk[a.l]&1?a.r<b.r:a.r>b.r;
return blk[a.l]<blk[b.l];
}
inline bool cmp2(data a,data b)
{
return a.id<b.id;
}
inline void add(int col)
{
if (++cnt[col]>=2) res+=1LL*cnt[col]*(cnt[col]-1)-1LL*(cnt[col]-1)*(cnt[col]-2);
}
inline void del(int col)
{
if (--cnt[col]>=1) res+=1LL*cnt[col]*(cnt[col]-1)-1LL*cnt[col]*(cnt[col]+1);
}
inline long long gcd(long long n,long long m)
{
return m?gcd(m,n%m):n;
}
inline void divnum(long long a,long long b)
{
if (!a) { puts("0/1"); return; }
long long d=gcd(a,b); a/=d; b/=d;
write(a); putchar('/'); write(b); putchar('\n');
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(m); size=sqrt(n);
for (i=1;i<=n;++i) read(a[i]),blk[i]=(i-1)/size+1;
for (i=1;i<=m;++i) read(q[i].l),read(q[i].r),q[i].id=i;
sort(q+1,q+m+1,cmp1); L=q[1].l; R=q[1].r;
for (i=L;i<=R;++i) add(a[i]); q[1].ans1=res; q[1].ans2=1LL*(R-L+1)*(R-L);
for (i=2;i<=m;++i)
{
while (L<q[i].l) del(a[L++]); while (L>q[i].l) add(a[--L]);
while (R>q[i].r) del(a[R--]); while (R<q[i].r) add(a[++R]);
q[i].ans1=res; q[i].ans2=1LL*(q[i].r-q[i].l+1)*(q[i].r-q[i].l);
}
for (sort(q+1,q+m+1,cmp2),i=1;i<=m;++i) divnum(q[i].ans1,q[i].ans2);
return 0;
}

Luogu P1494 [国家集训队]小Z的袜子的更多相关文章

  1. luogu P1494 [国家集训队]小Z的袜子 ( 普 通 )

    题目:    链接:https://www.luogu.org/problemnew/show/P1494 题意:一些袜子排成一排,每个袜子有固定的颜色.                        ...

  2. 【luogu P1494 [国家集训队]小Z的袜子】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1494 #include <cstdio> #include <algorithm> ...

  3. P1494 [国家集训队]小Z的袜子

    题目 P1494 [国家集训队]小Z的袜子 解析 在区间\([l,r]\)内, 任选两只袜子,有 \[r-l+1\choose2\] \[=\frac{(r-l+1)!}{2!(r-l-1)!}\] ...

  4. P1494 [国家集训队]小Z的袜子/莫队学习笔记(误

    P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小\(Z\)每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小\(Z\)再也无法忍受这恼人的找袜子过程,于是他 ...

  5. P1494 [国家集训队]小Z的袜子(luogu)

    P1494 小Z的袜子 终于了解了莫队算法(更专业的名称Square Root Decomposition of Queries) 莫队算法: 一般来说解决静态(实际上也有修改的但复杂度更高)的离线( ...

  6. 洛谷 P1494 [国家集训队] 小Z的袜子

    题目概述: 小Z把N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务 ...

  7. P1494 [国家集训队]小Z的袜子(莫队)

    题目链接:https://www.luogu.org/problemnew/show/P1494 题目大意:中文题目 具体思路:计算概率的时候,每一次是区间的移动,每一次移动,记得先将原来的记录的影响 ...

  8. 洛谷 P1494 [国家集训队]小Z的袜子(莫队)

    题目链接:https://www.luogu.com.cn/problem/P1494 一道很经典的莫队模板题,然而每道莫队题的大体轮廓都差不多. 首先莫队是一种基于分块的算法,它的显著特点就是: 能 ...

  9. P1494 [国家集训队]小Z的袜子(莫队算法)

    莫队板子 代码 #include <cstdio> #include <algorithm> #include <cstring> #include <cma ...

随机推荐

  1. NoHttp封装--01

    NoHttpActivity public class NoHttpActivity extends Activity implements View.OnClickListener { privat ...

  2. LeetCode题解之Insert into a Binary Search Tree

    1.题目描述 2.分析 插入算法. 3.代码 TreeNode* insertIntoBST(TreeNode* root, int val) { insert(root, val); return ...

  3. 【redis专题(5)】命令语法介绍之sets

    标签(空格分隔): Redis 关于 redis的无序集合有三个特点: 无序性, 确定性(描述准确) , 唯一性: 有点类似于数据容器: 增 SADD key member1 [member2] 作用 ...

  4. Java动态生成类以及动态添加属性

    有个技术实现需求:动态生成类,其中类中的属性来自参数对象中的全部属性以及来自参数对象properties文件. 那么技术实现支持:使用CGLib代理. 具体的实现步骤: 1.配置Maven文件: &l ...

  5. python第十二天 生成器,迭代器,内置函数

    第二模块学习:  生成器,迭代器,内置函数 生成器特点:只有在调用时才会生成相应的数据,运行的速度快! 示例: def fil(max):#斐波那契数 n,a,b=0,0,1 #定义初始数据 whil ...

  6. Linux MySql 安装与配置

    为什么选择MySQL数据库? 毫无疑问,绝大多数的使用linux操作系统的大中小型互联网网站都在使用MySQL作为其后端的数据库存储,从大型的BAT门户,到电商平台,分类门户等无一例都使用MySQL数 ...

  7. HCNA网络技术命令

    1.display version 显示系统软件版本及硬件信息 2.system-view 切换到系统视图 3.quit 切换回用户视图 4.return 从任意非用户视图退回到用户视图 5.sysn ...

  8. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  9. mysql列的处理

    MySQL 添加列,修改列,删除列 示例:ALTER TABLE tb_financial MODIFY CREATE_TIME DATETIME(3) DEFAULT NULL COMMENT '录 ...

  10. centos7下安装docker(12.5容器在单个host上的网络总结)

    单个host上的容器的网络:通过本章的学习,我们知道docker默认有三种网络,可以通过docker network ls查看: none:封闭的网络,通过--network=none来指定: hos ...