MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会被用作深度学习的入门样例。而TensorFlow的封装让使用MNIST数据集变得更加方便。MNIST数据集是NIST数据集的一个子集,它包含了60000张图片作为训练数据,10000张图片作为测试数据。在MNIST数据集中的每一张图片都代表了0~9中的一个数字。图片的大小都为28*28,且数字都会出现在图片的正中间,如下图所示:

在上图中右侧显示了一张数字1的图片,而右侧显示了这个图片所对应的像素矩阵,MNIST数据集提供了4个下载文件,具体参考①,在tensorflow中可将这四个文件直接下载放于一个目录中并加载,如下代码input_data.read_data_sets所示,如果指定目录中没有数据,那么tensorflow会自动去网络上进行下载。下面代码介绍了如何使用tensorflow操作MNIST数据集。

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf mnist = input_data.read_data_sets('/home/workspace/python/tf/data/mnist',one_hot=True)
# 打印“Training data size: 55000”
print "Training data size: ",mnist.train.num_examples
# 打印“Validating data size: 5000”
print "Validating data size: ",mnist.validation.num_examples
# 打印“Testing data size: 10000”
print "Testing data size: ",mnist.test.num_examples
# 打印“Example training data: [0. 0. 0. ... 0.380 0.376 ... 0.]”
print "Example training data: ",mnist.train.images[0]
# 打印“Example training data label: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]”
print "Example training data label: ",mnist.train.labels[0] batch_size = 100
# 从train的集合中选取batch_size个训练数据
xs, ys = mnist.train.next_batch(batch_size)
# 输出“X shape:(100,784)”
print "X shape: ", xs.shape
# 输出"Y shape:(100,10)"
print "Y shape: ", ys.shape

从上面的代码中可以看出,通过input_data.read_data_sets函数生成的类会自动将MNIST数据集划分为train, validation和test三个数据集,其中train这个集合内含有55000张图片,validation集合内含有5000张图片,这两个集合组成了MNIST本身提供的训练数据集。test集合内有10000张图片,这些图片都来自与MNIST提供的测试数据集。处理后的每一张图片是一个长度为784的一维数组,这个数组中的元素对应了图片像素矩阵中的每一个数字(28*28=784)。因为神经网络的输入是一个特征向量,所以在此把一张二维图像的像素矩阵放到一个一维数组中可以方便tensorflow将图片的像素矩阵提供给神经网络的输入层。像素矩阵中元素的取值范围为[0, 1],它代表了颜色的深浅。其中0表示白色背景,1表示黑色前景。为了方便使用随机梯度下降,input_data.read_data_sets函数生成的类还提供了mnist.train.next_batch函数,它可以从所有的训练数据中读取一小部分作为一个训练batch。

mnist.train.xs训练集特征

mnist.train.ys训练集分类标签

软件版本


TensorFlow 1.0.1  +  Python 2.7.12

参考


①、Yann LeCun教授网站中对MNIST数据集的详细介绍及数据下载。

②、tensorflow官网对MNIST数据集的介绍及部分操作。

③、《TensorFlow实战Google深度学习框架》第五章。

使用Tensorflow操作MNIST数据的更多相关文章

  1. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  2. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  3. 基于MNIST数据的卷积神经网络CNN

    基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211 ...

  4. TensorFlow笔记——关于MNIST数据的一个简单的例子

    这个程序参考自极客学院. from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # MN ...

  5. Tensorflow之MNIST解析

    要说2017年什么技术最火爆,无疑是google领衔的深度学习开源框架Tensorflow.本文简述一下深度学习的入门例子MNIST. 深度学习简单介绍 首先要简单区别几个概念:人工智能,机器学习,深 ...

  6. 芝麻HTTP:TensorFlow LSTM MNIST分类

    本节来介绍一下使用 RNN 的 LSTM 来做 MNIST 分类的方法,RNN 相比 CNN 来说,速度可能会慢,但可以节省更多的内存空间. 初始化 首先我们可以先初始化一些变量,如学习率.节点单元数 ...

  7. 2、TensorFlow训练MNIST

    装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...

  8. Tensorflow之MNIST的最佳实践思路总结

    Tensorflow之MNIST的最佳实践思路总结   在上两篇文章中已经总结出了深层神经网络常用方法和Tensorflow的最佳实践所需要的知识点,如果对这些基础不熟悉,可以返回去看一下.在< ...

  9. TensorFlow高效读取数据的方法——TFRecord的学习

    关于TensorFlow读取数据,官网给出了三种方法: 供给数据(Feeding):在TensorFlow程序运行的每一步,让python代码来供给数据. 从文件读取数据:在TensorFlow图的起 ...

随机推荐

  1. python自动化测试入门篇-postman

    接口测试基础-postman 常用的接口有两种:webservice接口和http api接口. Webservice接口是走soap协议通过http传输,请求报文和返回报文都是xml格式. http ...

  2. 【Git】【1】简单介绍

    前言: Git:资源管理,版本控制:其实我之前用的是SVN,据说是不好管理分支,不过我做的项目参与人数不多,所以SVN其实是够用的 Git客户端:安转后,可以直接在文件夹进行管理,不需要用命令行形式管 ...

  3. 构建工具build tools

    构建工具是从源代码自动创建可执行应用程序的程序(例如.apk for android app).构建包括将代码编译,链接和打包成可用或可执行的形式. 基本上,构建自动化是脚本或自动化软件开发人员在日常 ...

  4. [atcoder contest 010] F - Tree Game

    [atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...

  5. Mysql优化系列之——优化器对子查询的处理

    根据子查询的类型和位置不同,mysql优化器会对查询语句中的子查询采取不同的处理策略,其中包括改写为连接(join),改写为半连接(semi-join)及进行物化处理等. 标量子查询(Scalar S ...

  6. 学习笔记-AngularJs(九)

    到目前为止,我们所做的学习案例都是没有加任何动画效果的,对于以往来说,我们经常会去使用一些动画插件或是css框架(如:animate.css)来点缀我们的网页,这样显得生动,高大上,那么接下来我们可以 ...

  7. Servlet过滤器实现访客人数统计

    第一. Servlet的创建和配置  1. 创建一个Servlet需要实现javax.servlet.Filter接口,同时实现Filter的3个方法.             第一个方法时过滤器中的 ...

  8. .net 在同步方法中使用拉姆达表达式执行async/await异步操作

    代码如下: static void Main(string[] args) { ((Action)(async () =>{ var data = await HttpHelper.GetOnS ...

  9. Android : App客户端与后台服务的AIDL通信以及后台服务的JNI接口实现

    一.APP客户端进程与后台服务进程的AIDL通信 AIDL(Android Interface definition language-“接口定义语言”) 是 Android 提供的一种进程间通信 ( ...

  10. 原生js手风琴效果

    //js代码 //获取li var list = document.getElementsByTagName("li")[0]; //遍历  排他 for( var i=0;i&l ...