【ML】Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos
&
Towards Good Practices for Very Deep Two-Stream ConvNets
Note here: it's a learning note on the topic of video representations. This note incorporates two papers about popular two-stream architecture.
Link: http://arxiv.org/pdf/1406.2199v2.pdf
http://arxiv.org/pdf/1507.02159v1.pdf
Motivation: CNN has significantly boosted the performance of object recognition in still images. However, the use of it for video recognition with stacked frames doesn’t outperform the one with individual frame (work by Karpathy), which indicates traditional way of adapting CNN to video clips doesn’t capture the motion well.
Proposed Model:
In order to learn the spatio-temporal features well, this paper proposed a two-stream architecture for video recognition. It passes the spatial information (single static RGB frame) and another temporal information (optical flow of multiple frames) through the ConvNet. Then fuse the parallel outputs of two streams to form the final class score fusion.
The overall pipeline is shown below:

- ConvNet input configurations:
There are some options for the input of temporal stream. The author discussed about utilizing optical flow stacking and trajectory stacking as motional information. The former one considers displacements of each point between consecutive frames, while the latter one focuses on the displacements of every point in the initial frame throughout the entire sequences.
They also mentioned bi-directional optical flow to enhance the capacity of video representations; and mean flow subtraction to avoid the influences of camera motion.
Visualization:
The visualization of filters in this architecture is shown below.
Each column corresponds to a filter, each row – to an input channel.
As we can draw from the image, one single filter composed with half black and half white means to compute spatial derivative; and the filters in a column with black turning into white gradually means to compute temporal derivative.
With the intuition above, we can see how the two-stream architecture captures the spatio-temporal features well.

Improvements:
There is another paper named Towards Good Practices for Very Deep Two-Stream ConvNets, which improves the efficiency of two-stream model in practice.
They argue that previous two-stream model didn’t significantly outperform other hand-crafted features for the mainly two reasons: first, the network is not deep enough as VGGNet&GoogLeNet; second, the lack of plenty training data limits its performance.
Thus, they proposed some suggestions to learn a more powerful two-stream model:
- Pre-training for Two-stream ConvNets: pre-train both spatial and temporal nets on ImageNet.
- Smaller Learning Rate.
- More Data Augmentation Techniques
- High Dropout Ratio: make the training of deep network with small amount of data easier.
- Multi-GPU training.
【ML】Two-Stream Convolutional Networks for Action Recognition in Videos的更多相关文章
- 【CV论文阅读】Two stream convolutional Networks for action recognition in Vedios
论文的三个贡献 (1)提出了two-stream结构的CNN,由空间和时间两个维度的网络组成. (2)使用多帧的密集光流场作为训练输入,可以提取动作的信息. (3)利用了多任务训练的方法把两个数据集联 ...
- 【ML】ICLR2016_Delving Deeper into Convolutional Networks
ICLR2016_DELVING DEEPER INTO CONVOLUTIONAL NETWORKS Note here: Ballas recently proposed a novel fram ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...
- 【Semantic Segmentation】 Instance-sensitive Fully Convolutional Networks论文解析(转)
这篇文章比较简单,但还是不想写overview,转自: https://blog.csdn.net/zimenglan_sysu/article/details/52451098 另外,读这篇pape ...
- 【注意力机制】Attention Augmented Convolutional Networks
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 ...
- 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数
[论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction (35th-ICML,PMLR) [ ...
随机推荐
- Python作业第一课
零基础开始学习,最近周边的同学们都在学习,我也来试试,嘿嘿,都写下来,下次不记得了还能来看看~~ Python作业第一课1)登陆,三次输入锁定,下次不允许登陆2)设计一个三级菜单,菜单内容可自行定义, ...
- C#异步编程の----Threadpool( 线程池)
简介: 一个托管线程的创建需要数千个CPU周期,并且当发生线程切换时也会带来明显的开销.考虑线程的重用,避免不断重复创建新的线程是提高系统效率的一种方式. 线程池是一种提供效率的方式,它创建好一些线程 ...
- remove-duplicates-from-sorted-list (删除)
题意略: 思路:先造一个点它与所有点的值都不同,那么只要后面两个点的值相同就开始判断后面是不是也相同,最后将相同的拆下来就可以了. #include<iostream> #include& ...
- Recurrences UVA - 10870 (斐波拉契的一般形式推广)
题意:f(n) = a1f(n−1) + a2f(n−2) + a3f(n−3) + ... + adf(n−d), 计算这个f(n) 最重要的是推出矩阵. #include<cstdio> ...
- php 非对称加密解密类
<?phpnamespace app\Parentclient\model;header("Content-Type: text/html;charset=utf-8");/ ...
- MySQL数据备份之mysqldump使用(转)
文章转自 :https://www.cnblogs.com/jpfss/p/7867668.html mysqldump常用于MySQL数据库逻辑备份. 1.各种用法说明 A. 最简单的用法: mys ...
- 斯坦福HAI—细数全球18件AI大事记
3 月 18 日,由李飞飞担任所长之一的「以人为本人工智能研究所」(HAI)自启动以来不短的时间后,终于完成了正式成立的高光时刻.而正式上线的官网日前也更新了两条博文,一篇是详尽介绍 HAI 的文章: ...
- QWidget设置背景颜色
如果widget是子窗口首先要添加一句: this->setAttribute(Qt::WA_StyledBackground,true); this->setStyleSheet(&qu ...
- <转>大型分布式网站术语浅析
夜半睡起看书,看到一篇关于分布式网站性能优化术语的文章,个人觉得不错,分享出来... 原文地址:大型分布式网站术语分析 一.I/O优化 1.增加缓存,减少磁盘的访问次数. 2.优化磁盘的管理系统,设计 ...
- kubernetes集群中对多个pod操作命令
$ for i in 0 1; do kubectl exec web-$i -- sh -c 'echo hello $(hostname) > /usr/share/nginx/html/i ...