calc bzoj-2506

题目大意:给一个长度为n的非负整数序列A1,A2,…,An。现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且Ai mod p = k的值i的个数。

注释:$0\le n,m\le 10^5$,$1\le p\le 10^4$。


想法

直接把询问离线,就变成了求前$i$个数中$\% p=k$的数的个数。

显然直接做肯定做不了。

我们考虑按照mod数分块。

因为上限是$10^4$

如果$p\le 100$,我们用一个$f[i][j]$表示枚举到当前数除以$i$余$j$的数的个数。更新的复杂度为$O(\sqrt{p})$

反之$p<100$,$g[i]$表示枚举到当前数值为$i$的数的个数。更新的复杂度为$O(1)$

考虑如何查询答案:

如果$p\le 100$,直接输出,复杂度为$O(1)$。

反之,我们需要查询$g[k]+g[k+p]+g[k+2p]+...$。时间复杂度为$O(\sqrt{q})$。

故此总时间复杂度为$O(mlogm+n\sqrt{p})$。

Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int f1[110][110],f2[N];
int ans[2][N],a[N],cnt;
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
struct Node {int dic,id,f,p,k;}q[N<<1];
inline bool cmp(const Node &a,const Node &b) {return a.dic<b.dic;}
inline void update(int x)
{
for(int i=1;i<=100;i++) f1[i][x%i]++;
f2[x]++;
}
int main()
{
// freopen("bzoj2506.in","r",stdin);
int mx=0;
int n=rd(),m=rd(); for(int i=1;i<=n;i++) a[i]=rd(),mx=max(mx,a[i]);
for(int i=1;i<=m;i++)
{
int l=rd(),r=rd(),p=rd(),k=rd();
q[++cnt].dic=l-1,q[cnt].p=p,q[cnt].k=k,q[cnt].f=0,q[cnt].id=i;
q[++cnt].dic= r; q[cnt].p=p,q[cnt].k=k,q[cnt].f=1,q[cnt].id=i;
}
sort(q+1,q+cnt+1,cmp);
int pnt=0;
for(int i=1;i<=cnt;i++)
{
while(pnt<=q[i].dic) update(a[pnt]),pnt++;
int p=q[i].p,k=q[i].k;
if(p<=100)
{
ans[q[i].f][q[i].id]=f1[p][k];
}
else for(int j=k;j<=mx;j+=p)
{
ans[q[i].f][q[i].id]+=f2[j];
}
}
for(int i=1;i<=m;i++) printf("%d\n",ans[1][i]-ans[0][i]);
return 0;
}

小结:这种根据当前范围思考不同的解决策略的分类讨论思想是极其重要的。

[bzoj2506]calc_分块处理的更多相关文章

  1. PHP搭建大文件切割分块上传功能

    背景 在网站开发中,文件上传是很常见的一个功能.相信很多人都会遇到这种情况,想传一个文件上去,然后网页提示"该文件过大".因为一般情况下,我们都需要对上传的文件大小做限制,防止出现 ...

  2. POJ2104 K-th Number [分块做法]

    传送:主席树做法http://www.cnblogs.com/candy99/p/6160704.html 做那倒带修改的主席树时就发现分块可以做,然后就试了试 思想和教主的魔法差不多,只不过那个是求 ...

  3. HDU 4467 分块

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4467 题意:给定n个点m条边的无向图,点被染色(黑0/白1),边带边权.然后q个询问.询问分为两种: ...

  4. 2016 ACM/ICPC Asia Regional Dalian Online 1010 Weak Pair dfs序+分块

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...

  5. CC countari & 分块+FFT

    题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...

  6. bzoj2002弹(dan)飞绵羊 分块水过

    据说是道lct求深度的题 但是在小猫大的指点下用分块就n^1.5水过了 = =数据忘记加强系列 代码极其不美观,原因是一开始是听小猫大讲的题意,还以为是弹到最前面... #include <cs ...

  7. BZOJ2506: calc

    Description            给一个长度为n的非负整数序列A1,A2,…,An.现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且Ai mod p = k的值 ...

  8. C语言两种查找方式(分块查找,二分法)

    二分法(必须要保证数据是有序排列的):   分块查找(数据有如下特点:块间有序,块内无序):    

  9. [New Portal]Windows Azure Storage (14) 使用Azure Blob的PutBlock方法,实现文件的分块、离线上传

    <Windows Azure Platform 系列文章目录> 相关内容 Windows Azure Platform (二十二) Windows Azure Storage Servic ...

随机推荐

  1. 【转】Nicescroll滚动条插件的用法

    原网址:http://blog.csdn.net/mss359681091/article/details/52838179 Nicescroll滚动条插件是一个非常强大的基于JQUERY的滚动条插件 ...

  2. openmv第一次调试

    2018-09-19  20:14:51 import sensor, image, time import car import json import time from pyb import U ...

  3. java 生成特定范围内的随机数

    /** * 生成[1, max]之间的随机数 */ public static Integer getRandomNumber(Integer max) { Random rd = new Rando ...

  4. Android学习笔记(十一) Intent

    一.Intent对象的基本概念 -Intent是Android应用程序组件之一 -Intent对象在Android系统当中表示一种意图 -Intent当中最重要的内容是action与data 二.In ...

  5. 键盘工具栏的快速集成--IQKeyboardManager

    转自:http://www.cnblogs.com/gaoxiaoniu/p/5333187.html 键盘工具栏的快速集成--IQKeyboardManager IQKeyboardManager, ...

  6. 计算器Pro应用项目源码

    本计算器实现了一些简单的功能,可能本身还存在一些缺陷,希望大家提建议,能够改进一下. 源码项目我已经上传到源码天堂那里了:http://code.662p.com/list/11_1.html < ...

  7. MySQL(MMM架构使用)

    本案例要求基于普通版的MySQL服务器改造MMM架构,完成以下任务操作:启动MMM集群架构设置集群中服务器为online状态MySQL-MMM架构部署完成后需要启动,数据库端启动mmm-agent进程 ...

  8. 5-Java-C(单位分数)

    题目描述: 形如:1/a 的分数称为单位分数. 可以把1分解为若干个互不相同的单位分数之和. 例如: 1 = 1/2 + 1/3 + 1/9 + 1/18 1 = 1/2 + 1/3 + 1/10 + ...

  9. CREATE AGGREGATE - 定义一个新的聚集函数

    SYNOPSIS CREATE AGGREGATE name ( BASETYPE = input_data_type, SFUNC = sfunc, STYPE = state_data_type ...

  10. 查看DNS、IP、Mac等

    A.Win98:winipcfg  B.Win2000以上:Ipconfig/all  C.NSLOOKUP:如查看河北的DNS  C:\\>nslookup  Default Server: ...