画一下柿子就知道是求区间乘积乘区间内所有质因数的(p-1)/p(就是求欧拉的公式嘛)

看上去莫队就很靠谱然而时间O(nsqrt(n)logn)并不资瓷

还是离线,确定右端点,对于1~i的区间内的质因数我们在树状数组把他们插入到最后一次出现的位置,然后扫一次求逆元+找质因数O(nlog^2n)

注意算质因子的时候不能用试除法啊

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL mod=1e9+;
int quick_pow(int A,int p)
{
int ret=;
while(p!=)
{
if(p%==)ret=(LL)ret*A%mod;
A=(LL)A*A%mod;p/=;
}
return ret;
}
int inv(int A){return quick_pow(A,mod-);} int pr,prime[],pm[];
bool v[];
void get_prime()
{
pr=;
for(int i=;i<=;i++)
{
if(v[i]==false)prime[++pr]=i,pm[i]=i;
for(int j=;j<=pr&&i*prime[j]<=;j++)
{
v[i*prime[j]]=true;
pm[i*prime[j]]=min(pm[i],prime[j]);
if(i%prime[j]==)break;
}
}
} int n;LL s[];
int lowbit(int x){return x&-x;}
void change(int x,LL k)
{
while(x<=n)
{
s[x]=s[x]*k%mod;
x+=lowbit(x);
}
}
LL getsum(int x)
{
LL ret=;
while(x>)
{
ret=ret*s[x]%mod;
x-=lowbit(x);
}
return ret;
} int a[];LL sm[];
struct query{int l,r,id;}q[];int as[];
bool cmp(query q1,query q2){return q1.r<q2.r;}
int last[];
int main()
{
get_prime();
scanf("%d",&n);
sm[]=;
for(int i=;i<=n;i++)
scanf("%d",&a[i]), sm[i]=sm[i-]*a[i]%mod;
int Q;
scanf("%d",&Q);
for(int i=;i<=Q;i++)
scanf("%d%d",&q[i].l,&q[i].r), q[i].id=i;
sort(q+,q+Q+,cmp); int j=;
memset(last,,sizeof(last));
for(int i=;i<=n;i++)s[i]=;
for(int i=;i<=n;i++)
{
int d=a[i];
while(d>)
{
int p=pm[d];LL c=(LL)(p-)*inv(p)%mod;
if(last[p]>)change(last[p],inv(c));
last[p]=i;
change(last[p],c);
while(d%p==)d/=p;
} while(j<=Q&&q[j].r==i)
{
as[q[j].id]=sm[q[j].r]*inv(sm[q[j].l-])%mod*getsum(q[j].r)%mod*inv(getsum(q[j].l-))%mod;
j++;
}
} for(int i=;i<=Q;i++)printf("%d\n",as[i]);
return ;
}

51nod 1642 区间欧拉函数 && codeforce594D REQ的更多相关文章

  1. 【51Nod 1239】欧拉函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...

  2. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  3. 【51nod】1239 欧拉函数之和

    题解 写完上一道就开始写这个,大体上就是代码改了改而已= = 好吧,再推一下式子! \(\sum_{i = 1}^{n}i = \sum_{i = 1}^{n}\sum_{d | i}\phi(d) ...

  4. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  5. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  6. Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

  7. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  8. 51nod 1040最大公约数和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

  9. 51Nod 1136 欧拉函数 Label:数论

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

随机推荐

  1. Jmeter的属性和变量

    jmeter的属性和变量可以简单理解为编程里面的全局变量和局部变量.属性是全局可见,可以跨线程组传递调用,而变量基本上只能存在于一个线程组中(在测试计划定义的变量也是可以跨线程组传递的).同线程组内的 ...

  2. POJ3107 Godfather (树形DP)

    题意:求树的重心 题解:先跑一遍dfs 预处理出这种遍历方式每个节点的儿子(含自己)的数 再跑一遍 每个点的值就是他所有儿子中取一个最大值 再和它父亲这个方向比较一下 又被卡常了 vector一直tl ...

  3. Android studio升级后原有项目无法正常编译运行问题

    Android studio工具升级后Gradle版本问题 背景 升级AndroidStudio到最新版本后,原来可正常编译输出AndroidTest的项目无法正常编译通过. 原因 升级后的Andro ...

  4. Android 7.0系统代码调用安装apk时报错FileUriExposedException完美解决

    项目更新遇到问题   Android项目开发中经常遇到下载更新的需求,以前调用系统安装器执行安装操作代码如下: Intent intent = new Intent(); intent.setActi ...

  5. SERE0014: Illegal HTML character: decimal 154

    问题:jmeter,生成报告转化成html,报错SERE0014: Illegal HTML character: decimal 154 原因: 某些字符,特别是控制字符#x7F-#x9F ,在XM ...

  6. hdu 1040

    As Easy As A+B Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  7. Codeforces 938C - Constructing Tests

    传送门:http://codeforces.com/contest/938/problem/C 给定两个正整数n,m(m≤n),对于一个n阶0-1方阵,其任意m阶子方阵中至少有一个元素“0”,则可以求 ...

  8. 在Eclipse中设置Maven插件

    [步骤] Maven插件的设置: ①installations:指定Maven核心程序的位置.不建议使用Maven插件自带的Maven程序,而应该使用我们自己解压的那个. ②user settings ...

  9. [置顶] Linux学习总结(20)——Linux 文件夹结构和作用

     /bin 二进制可执行命令 /dev 设备特殊文件 /etc 系统管理和配置文件 /etc/rc.d 启动的配置文件和脚本 /home 用户主目录的基点,比如用户user的主目录就是/home/us ...

  10. [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)

    传送门 f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解 可以优化 k 其实等于 n - j + i 则 f[i][j] = max(f[i + 1][j] + a[ ...