51nod 1642 区间欧拉函数 && codeforce594D REQ
画一下柿子就知道是求区间乘积乘区间内所有质因数的(p-1)/p(就是求欧拉的公式嘛)
看上去莫队就很靠谱然而时间O(nsqrt(n)logn)并不资瓷
还是离线,确定右端点,对于1~i的区间内的质因数我们在树状数组把他们插入到最后一次出现的位置,然后扫一次求逆元+找质因数O(nlog^2n)
注意算质因子的时候不能用试除法啊
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL mod=1e9+;
int quick_pow(int A,int p)
{
int ret=;
while(p!=)
{
if(p%==)ret=(LL)ret*A%mod;
A=(LL)A*A%mod;p/=;
}
return ret;
}
int inv(int A){return quick_pow(A,mod-);} int pr,prime[],pm[];
bool v[];
void get_prime()
{
pr=;
for(int i=;i<=;i++)
{
if(v[i]==false)prime[++pr]=i,pm[i]=i;
for(int j=;j<=pr&&i*prime[j]<=;j++)
{
v[i*prime[j]]=true;
pm[i*prime[j]]=min(pm[i],prime[j]);
if(i%prime[j]==)break;
}
}
} int n;LL s[];
int lowbit(int x){return x&-x;}
void change(int x,LL k)
{
while(x<=n)
{
s[x]=s[x]*k%mod;
x+=lowbit(x);
}
}
LL getsum(int x)
{
LL ret=;
while(x>)
{
ret=ret*s[x]%mod;
x-=lowbit(x);
}
return ret;
} int a[];LL sm[];
struct query{int l,r,id;}q[];int as[];
bool cmp(query q1,query q2){return q1.r<q2.r;}
int last[];
int main()
{
get_prime();
scanf("%d",&n);
sm[]=;
for(int i=;i<=n;i++)
scanf("%d",&a[i]), sm[i]=sm[i-]*a[i]%mod;
int Q;
scanf("%d",&Q);
for(int i=;i<=Q;i++)
scanf("%d%d",&q[i].l,&q[i].r), q[i].id=i;
sort(q+,q+Q+,cmp); int j=;
memset(last,,sizeof(last));
for(int i=;i<=n;i++)s[i]=;
for(int i=;i<=n;i++)
{
int d=a[i];
while(d>)
{
int p=pm[d];LL c=(LL)(p-)*inv(p)%mod;
if(last[p]>)change(last[p],inv(c));
last[p]=i;
change(last[p],c);
while(d%p==)d/=p;
} while(j<=Q&&q[j].r==i)
{
as[q[j].id]=sm[q[j].r]*inv(sm[q[j].l-])%mod*getsum(q[j].r)%mod*inv(getsum(q[j].l-))%mod;
j++;
}
} for(int i=;i<=Q;i++)printf("%d\n",as[i]);
return ;
}
51nod 1642 区间欧拉函数 && codeforce594D REQ的更多相关文章
- 【51Nod 1239】欧拉函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...
- 【51nod】1239 欧拉函数之和 杜教筛
[题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...
- 【51nod】1239 欧拉函数之和
题解 写完上一道就开始写这个,大体上就是代码改了改而已= = 好吧,再推一下式子! \(\sum_{i = 1}^{n}i = \sum_{i = 1}^{n}\sum_{d | i}\phi(d) ...
- 51nod 1239 欧拉函数之和(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...
- [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...
- 51nod 1040最大公约数和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 51Nod 1136 欧拉函数 Label:数论
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...
随机推荐
- CAD控件:梦想CAD控件功能更新 清除图上的所有高亮实体
1,修正得组里面的实体,把删除实体也返回的错误 2,修正代理实体改不了颜色问题. 3,修正捕捉块插入点,有时会跑到很远的位置问题. 4.MxDrawChange类增加ToBlockRefe ...
- A useful logger function in C project.
#cat log.c #include <stdio.h> #include <stdlib.h> #include <string.h> #include < ...
- thupc & cts & apio & thusc 游记 (北京17日游记)
thupc & cts & apio & thusc 游记 (北京17日游记) Day 0 和隔壁校两人py了一下,六个人组了两队,(左哼哼)与(右哼哼),我和Camoufla ...
- PS切图基本操作
PS切图基本操作 2016-05-11 20:56:46| 分类: PhotoShop|字号 订阅 下载LOFTER我的照片书 | 1首先在“文件”中打开一张图片. 2点击“移 ...
- 洛谷——P3389 【模板】高斯消元法
P3389 [模板]高斯消元法 以下内容都可省略,直接转大佬博客%%% 高斯消元总结 只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切 高斯消元最大用途就是解多 ...
- [Python数据结构] 使用 Circular List实现Queue
[Python数据结构] 使用 Circular List实现Queue 1. Queue队列,又称为伫列(queue),是先进先出(FIFO, First-In-First-Out)的线性表.在具体 ...
- springcloud中feign接值问题
很多时候使用feign都接收不到传过来的数据,一般情况如下! 如果是基本数据类型的话,使用@RequestParam @RequestMapping(value = "/selectDeta ...
- Win2008 Server下配置安装IIS
最近又买了台服务器,接下来就是配置环境啦. 接下来接记录一下IIS的配置过程. 首先找到服务器管理器 打开后找到角色,点击添加角色 处理添加角色向导 勾选Web服务器(IIS) 点击添加必要功能 然后 ...
- react入门-----(jsx语法,在react中获取真实的dom节点)
1.jsx语法 var names = ['Alice', 'Emily', 'Kate']; <!-- HTML 语言直接写在 JavaScript 语言之中,不加任何引号,这就是 JSX 的 ...
- 洛谷 4768 LOJ 2718「NOI2018」归程
[题解] 本题有多种做法,例如可持久化并查集.kruskal重构树等. kruskal重构树的做法是这样的:先把边按照海拔h从大到小的顺序排序,然后跑kruskal建立海拔的最大生成树,顺便建krus ...