博文重点:

    学习目标:哪些内存需要回收

         什么时候回收

            如何回收

    在基于概念讨论的模型中,主要对Java堆和方法区进行讨论。

    why?:一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样。只有在程序运行期间才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,gc关注的就是这一块内存。

哪些内存需要回收:

        判断对象是否存活:

                引用计数算法:对象中添加一个引用计数器,有一个地方引用它则计数器加1,引用失效时,减1。引用为0的对象就是不可使用的。

                  优点:实现简单,判定效率高。

                  缺点:无法解决对象之间的循环引用,见代码。

 public class ReferenceCountingGC {
public Object instance = null; private static final int _1MB = 1024 * 1024; private byte[] bigSize = new byte[2 * _1MB]; public static void testGC() {
ReferenceCountingGC objA = new ReferenceCountingGC();
ReferenceCountingGC objB = new ReferenceCountingGC();
objA.instance = objB;
objB.instance = objA; objA = null;
objB = null; // 虽然引用计数都为1,但内存还是被回收了,说明采用的不是引用计数算法
System.gc();
} public static void main(String[] args) {
testGC();
}
}

                可达性分析算法:思路,选择一系列称为"GC Roots"的对象作为起始点,从这些节点向下搜索,走过的路就称为引用链。如果一个对象无法通过引用链到达"GC roots",则证明该对象不可用,则可被回收。

                  可作为GC Roots的对象:虚拟机栈中引用的对象,方法区类静态属性引用的对象,方法区中常量引用的对象,Nativa方法中引用的对象。 todo:理解gc roots

    引用:

      todo:各种应用场景

      引用细化定义:当内存空间还足够,则能保留在内存中。如果内存空间进行垃圾收集之后还是非常紧张,则抛弃这些对象。

      基于这样的需求,扩充了引用的概念。

      强引用:只要强引用存在,就永远不会被gc。eg. Object obj = new Object();

      软引用:内存充足时不会回收,不足时被回收。jvm将这个软引用加入到与之关联的引用队列

      弱引用:无论内存是否充足,都会进行回收。jvm将这个弱引用加入到与之关联的引用队列

      虚引用:

    

    对象的两次标记:如果对象在进行第一次可达性分析之后,没有到gc roots到引用链,则进行第一次标记。并进入第一次自救过程,如果该对象重写了finalize()方法时 && finalize()方法没有被虚拟机调用过,则会执行finalize()方法进行自救过程,将该对象放入到一个F-Queue到队列中,由虚拟机自动建立的,低优先级的Finalize线程去执行(但是不保证会等待方法运行结束,为了效率考虑)。如果在finalize()方法中将该对象的引用赋值给了类变量或成员变量,重新建立起了可达关系,则在该第二次标记过程会被移出"即将回收"集合,自救成功,但要注意,这样的自救只能执行一次。

    

 public class FinalizeEscapeGC {
public static FinalizeEscapeGC SAVE_HOOK = null;
public void isAlive() {
System.out.println("yes , i am still alive");
} @Override
protected void finalize() throws Throwable {
System.out.println("finalize method excute!");
FinalizeEscapeGC.SAVE_HOOK = this;
} public static void main(String[] args) throws InterruptedException {
SAVE_HOOK = new FinalizeEscapeGC(); // 第一次拯救自己成功
SAVE_HOOK = null;
System.gc(); Thread.sleep(500);
if(SAVE_HOOK != null) {
SAVE_HOOK.isAlive();
} else {
System.out.println("dead");
} // 第二次拯救自己失败,只能执行一次
SAVE_HOOK = null;
System.gc(); Thread.sleep(500);
if(SAVE_HOOK != null) {
SAVE_HOOK.isAlive();
} else {
System.out.println("dead");
}
}
}

    方法区(永久代)的回收:主要回收废弃常量和无用类。

                废弃常量:eg:"abc"存在常量池中,但没有其它地方引用这个常量,类,方法,字段的符号引用也和这个类似。

                无用类:该类所有实例已被回收

                    加载该类的ClassLoader已被回收

                    对应的Class对象没有被引用,无法在其它地方通过反射访问该类的方法。

                      满足了这些条件的类可以被回收,是否进行回收,取决于我们对虚拟机的参数设置情况。

                使用场景:在大量使用反射,动态代理,CGLib等频繁定义自ClassLoader的场景都需要虚拟机具备类卸载的功能

深入理解java虚拟机---垃圾收集器和分配策略-1的更多相关文章

  1. 深入理解java虚拟机----->垃圾收集器与内存分配策略(下)

    1.  前言 内存分配与回收策略 JVM堆的结构分析(新生代.老年代.永久代) 对象优先在Eden分配 大对象直接进入老年代 长期存活的对象将进入老年代 动态对象年龄判定 空间分配担保  2.  垃圾 ...

  2. 深入理解JAVA虚拟机 垃圾收集器和内存分配策略

    引用计数算法 很多教科书判断对象是否存活的算法是这样的:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1:当引用失效时,计数器值就减1:任何时刻计数器都为0的对象就是不可能再被使用的 ...

  3. 深入理解JAVA虚拟机原理之内存分配策略(二)

    更多Android高级架构进阶视频学习请点击:https://space.bilibili.com/474380680 1.对象优先在Eden分配 大多情况,对象在新生代Eden区分配.当Eden区没 ...

  4. 深入理解java虚拟机笔记Chapter3-内存分配策略

    内存分配策略 新生代和老年代的 GC 操作 新生代 GC 操作:Minor GC 发生的非常频繁,速度较块. 老年代 GC 操作:Full GC / Major GC 经常伴随着至少一次的 Minor ...

  5. [深入理解Java虚拟机]<垃圾收集器与内存分配策略>

    Overview 垃圾收集考虑三件事: 哪些内存需要回收? 什么时候回收? 如何回收? 重点考虑Java堆中动态分配和回收的内存. Is Object alive? 引用计数法 给对象添加一个引用计数 ...

  6. 深入理解java虚拟机--垃圾收集器

    对象的销毁 对象的finalize方法只会执行一次,在finalize里可以自救不被销毁,二次被主动gc,必定会销毁 类销毁

  7. Java虚拟机垃圾收集器与内存分配策略

    Java虚拟机垃圾收集器与内存分配策略 概述 那些内存须要回收,什么时候回收.怎样回收是GC须要完毕的3件事情. 程序计数器.虚拟机栈与本地方法栈这三个区域都是线程私有的,内存的分配与回收都具有确定性 ...

  8. [转] 深入理解Java G1垃圾收集器

    [From] https://www.cnblogs.com/ASPNET2008/p/6496481.html 深入理解Java G1垃圾收集器 本文首先简单介绍了垃圾收集的常见方式,然后再分析了G ...

  9. 《深入理解 java 虚拟机》学习 -- 内存分配

    <深入理解 java 虚拟机>学习 -- 内存分配 1. Minor GC 和 Full GC 区别 概念: 新生代 GC(Minor GC):指发生在新生代的垃圾收集动作,因为 Java ...

随机推荐

  1. 系统队列中的Windows错误报告

  2. 不同节点 IP 时间同步 分布式时间同步系统的参考时间获取技术分析

    linux linux下时间同步的两种方法分享_LINUX_操作系统_脚本之家 http://www.jb51.net/LINUXjishu/73979.html 分布式时间同步系统的参考时间获取技术 ...

  3. Lightoj 1014 - Ifter Party

    I have an Ifter party at the 5th day of Ramadan for the contestants. For this reason I have invited  ...

  4. 牛客练习赛13D:幸运数字Ⅳ(康托展开) F:关键字排序

    链接:https://www.nowcoder.com/acm/contest/70/D 题目: 定义一个数字为幸运数字当且仅当它的所有数位都是4或者7. 比如说,47.744.4都是幸运数字而5.1 ...

  5. 修改 Appdelegate 文件名为添加项目前缀的方法

    本文假设你的项目是 Test, 那么为了给你的 Appdelegate 文件保持按照项目名为前缀 ,就需要对 Appdelegate 文件进行修改前缀名. 技巧分享:将开发中的 Appdelegate ...

  6. AWS EC2中部署Apache服务器(LAMP)

    关键词: 1.新建aws ec2实例 2.使用putty连接到aws ec2 实例(SSH协议) 3.使用filezilla连接到aws ec2实例(SFTP协议) 4.在aws ec2上部署apac ...

  7. eclipse集成lombok注解不起作用

    安装步骤: 步骤一:lombok的下载地址为:https://projectlombok.org/download,jar包很小.这里也把依赖写出来: <dependency> <g ...

  8. 洛谷 P3621 [APIO2007]风铃【贪心】

    没有算法,但是要注意细节. 首先无解的情况,显然的是最小深度的叶子节点和最大深度的叶子节点的深度差大于1:还有一种比较难想,就是如果一个点的左右子树都有最大和最小深度的叶子节点,这样交换左右子树也不行 ...

  9. H5页面在微信端的分享

    微信分享,咋一看好像很复杂,实则非常简单.只需要调用微信官方出的微信jssdk,加上些许配置,就可以实现h5页面在微信上的分享,官方文档地址为:https://mp.weixin.qq.com/wik ...

  10. [Swift通天遁地]一、超级工具-(4)使用UIWebView(网页视图)加载HTML和Gif动画

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...