题目大意:

一个有n面的色子抛掷多少次能使所有面都能被抛到过,求期望值

总面数为n,当已经抛到过 i 个不同面时,我们抛出下一个不同面的概率为 (n-i)/n,那么抛的次数为 n/(n-i)

将所有抛出下个面的次数累加起来就好了

 #include <cstdio>
int main(){
int kase,n;
scanf("%d",&kase);
while(kase--){
scanf("%d",&n);
double ans = ;
for(int i = ;i <= n;i++) ans += (n+0.0)/(i+0.0);
printf("%.2f\n",ans);
}
return ;
}

SPOJ FAVDICE 数学期望的更多相关文章

  1. SPOJ - FAVDICE 简单期望

    dp[0]=0; // rep(i,1,n) dp[i]=(double)(n-i)/n*dp[i-1]+1+(double)(i)/n*dp[i]; // (n-i)/n dp[i]= n-i / ...

  2. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  3. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  4. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  5. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  6. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  7. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  8. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  9. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

随机推荐

  1. net MVC 四种基本 Filter

    四种基本 Filter 概述 MVC框架支持的Filter可以归为四类,每一类都可以对处理请求的不同时间点引入额外的逻辑处理.这四类Filter如下表:   使用内置的Authorization Fi ...

  2. disconf 分布式配置

    摘要 为了更好的解决分布式环境下多台服务实例的配置统一管理问题,本文提出了一套完整的分布式配置管理解决方案(简称为disconf[4],下同).首先,实现了同构系统的配置发布统一化,提供了配置服务se ...

  3. JDK使用最多的模式之一--观察者模式

    公司接到新任务,需要做一个气象监测应用.该应用将实现三个界面:当前气象状态,气象统计以及气象预报.应用从WeatherObject对象中获取所需数据:温度,湿度,气压.当然,为了可扩展性,该应用同时也 ...

  4. Android CursorAdapter的使用

    CursorAdapter继承于BaseAdapter,为Cursor和ListView连接提供了桥梁. 首先看一下CursorAdapter的部分源码: /** * @see android.wid ...

  5. 微软将于12月起开始推送Windows 10 Mobile

    [环球科技报道 记者 陈薇]据瘾科技网站10月8日消息,根据微软Lumia官方Faceboo发布的消息,新版系统Windows 10 Mobile 将会12月起陆续开始推送. 推送的具体时程根据地区. ...

  6. oracle插入中文乱码

    执行sql: select  userenv('language')     from dual;  --  AMERICAN_AMERICA.ZHS16GBK select * from v$nls ...

  7. Swift学习——流程控制

    1.for in循环 (1)简单使用: for-in和范围运算符 for i in 1...3 { println(i) } (2)如果在循环中用不到i,可用_代替 for _ in 1...3 { ...

  8. docker 的容器入门

    Linux Namespace LXC所实现的隔离性主要是来自kernel的namespace, 其中pid, net, ipc, mnt, uts 等namespace将container的进程, ...

  9. Visual Studio 2017部署 webStrom开发的nodejs项目

    vs点击文件--新建--项目--JavaScript--Node.js--通过现有Node.js代码 wxxcx为nodejs项目根目录,然后右击整个项目--属性:1.启动目录2.默认打开的链接3.设 ...

  10. Vickers Vane Pump - Hydraulic Vane Pump Failure: Cavitation, Mechanical Damage

    One of our readers recently wrote to me about the following questions: “Recently, we purchased a sec ...