题意就是给一张无向有边权的图、起点、终点,求起点到终点经过n条边的最短路。n<=10^6,点的编号<=10^3,边数<=10^2。

这个边数让人不由自主地想到了floyd,然后发现floyd每次相当于加入了一个点(注意,这里的“一次”也是O(点数^3)的,但是在这一次floyd的过程中不会更新结果。)也就是说,第一次floyd求出来了两点之间只走一条边的最短路,第二次求出来了两点之间只走两条边的最短路……,第n次求出来了只走n条边的最短路。这时候就会发现,n遍不在过程中更新答案的floyd后,答案就出来了。

好不容易推到了这一步,发现了n<=10^6的数据范围,想必心中是有些崩溃的。但是邻接矩阵是什么?是矩阵!这样就可以思考用矩阵快速幂的方法。发现floyd的转移时c[i][j] = min { dis[i][k] + dis[k][j] | i,k,j为图中点的编号},和矩阵快速幂的转移有点像,而且转移时也是上一步求出的答案对于最初的邻接矩阵作运算。这时就可以考虑用一些不对劲的方法改造矩阵乘法。

将矩阵快速幂中的乘法改成上面那样的转移方法,就会发现只要求出邻接矩阵^n就好了。

这样就完了?当然不是。

题目中,点的编号<=10^3,直接floyd肯定会时间超限。注意到边数<=10^2,而每条边顶多连两个与之前不同的点,那么出现的不同的点顶多有200个。将点进行离散化就解决了。

还有一些细节,编的时候都能想得到,在这就不多说了。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<iomanip>
#include<cstdlib>
using namespace std;
typedef struct node{
int mat[][];
}Matrix;
Matrix rd,dis;
int n,t,s,e,siz,mc[];
int read(){
int x=,f=;
char ch=getchar();
while(isdigit(ch)== && ch!='-')ch=getchar();
if(ch=='-')f=-;
while(isdigit(ch))x=x*+ch-'',ch=getchar();
return x*f;
}
Matrix mul(Matrix a,Matrix b){
Matrix c;
memset(c.mat,0x3f,sizeof(c.mat));
for(int k=;k<=siz;k++){
for(int i=;i<=siz;i++){
for(int j=;j<=siz;j++){
c.mat[i][j]=min(c.mat[i][j],a.mat[i][k]+b.mat[k][j]);
}
}
}
return c;
}
void pow(int tim){
while(tim)
{
if(tim&)
rd=mul(rd,dis);
dis=mul(dis,dis);
tim>>=;
} }
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=read(),t=read(),s=read(),e=read();
memset(rd.mat,0x3f,sizeof(rd.mat));
memset(dis.mat,0x3f,sizeof(dis.mat));
memset(mc,-,sizeof(mc));
for(int i=;i<=t;i++){
int w=read(),u=read(),v=read();
if(mc[u]==-)mc[u]=++siz;
if(mc[v]==-)mc[v]=++siz;
u=mc[u],v=mc[v];
dis.mat[v][u]=min(dis.mat[u][v],w);
dis.mat[u][v]=min(dis.mat[u][v],w);
}
for(int i=;i<=siz;i++){
rd.mat[i][i]=;
}
pow(n);
cout<<rd.mat[mc[s]][mc[e]];
return ;
}

并不对劲的矩阵快速幂

并不对劲的[USACO07NOV,洛谷p2886]Cow Relays的更多相关文章

  1. 洛谷P2886 [USACO07NOV]牛继电器Cow Relays

    题意很简单,给一张图,把基本的求起点到终点最短路改成求经过k条边的最短路. 求最短路常用的算法是dijkstra,SPFA,还有floyd. 考虑floyd的过程: c[i][j]=min(c[i][ ...

  2. 洛谷 P2886 [USACO07NOV]牛继电器Cow Relays

    题面 解题思路 ## floyd+矩阵快速幂,跟GhostCai爷打赌用不用离散化,最后完败..GhostCai真是tql ! 有个巧妙的方法就是将节点重新编号,因为与节点无关. 代码 #includ ...

  3. 洛谷P2886 [USACO07NOV]Cow Relays G (矩阵乘法与路径问题)

    本题就是求两点间只经过n条边的最短路径,定义广义的矩阵乘法,就是把普通的矩阵乘法从求和改成了取最小值,把内部相乘改成了相加. 代码包含三个内容:广义矩阵乘法,矩阵快速幂,离散化: 1 #include ...

  4. [洛谷P2886] 牛继电器Cow Relays

    问题描述 For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race ...

  5. 洛谷 [P2886] 牛继电器Cow Relays

    最短路 + 矩阵快速幂 我们可以改进矩阵快速幂,使得它适合本题 用图的邻接矩阵和快速幂实现 注意 dis[i][i] 不能置为 0 #include <iostream> #include ...

  6. 洛谷P2886牛继电器

    传送门啦 倍增 $ Floyd $ 注意结构体里二维数组不能开到 $ 2000 $ #include <iostream> #include <cstdio> #include ...

  7. 2021.11.03 P2886 [USACO07NOV]Cow Relays G(矩阵+floyed)

    2021.11.03 P2886 [USACO07NOV]Cow Relays G(矩阵+floyed) [P2886 USACO07NOV]Cow Relays G - 洛谷 | 计算机科学教育新生 ...

  8. P2886 [USACO07NOV]牛继电器Cow Relays

    题目描述 For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race ...

  9. 洛谷P2879 [USACO07JAN]区间统计Tallest Cow

    To 洛谷.2879 区间统计 题目描述 FJ's N (1 ≤ N ≤ 10,000) cows conveniently indexed 1..N are standing in a line. ...

随机推荐

  1. C#排序1(冒泡排序、直接排序、快速排序)

    冒泡排序:就是两个两个的这个比较好理解,代码也比较好写出来. 它的原理就是相邻的两个两个的比较,如果前面的数比后面的大,那么交换,它这个在比较完一次的时候可以得到最大的一个数,然后接着循环,每次外循环 ...

  2. google的三篇论文

    文章:MapReduce/GFS/BigTable三大技术资料 文章:Google File System(中文翻译) 文章:MapReduce:超大机群上的简单数据处理 文章:Google's Bi ...

  3. python多线程--优先级队列(Queue)

    Python的Queue模块中提供了同步的.线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue.这些队列都实现 ...

  4. BZOJ 2561: 最小生成树【最小割/最大流】

    Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v), ...

  5. POJ1159:Palindrome【dp】

    题目大意:给出一个字符串,问至少添加多少个字符才能使它成为回文串? 思路:很明显的方程是:dp[i][j]=min{dp[i+1][j],dp[i][j-1],dp[i+1][j-1](str[i]= ...

  6. 【搜索】codeforces C. The Tag Game

    http://codeforces.com/contest/813/problem/C [题意] 给定一棵有n个结点的树,初始时Alice在根结点1,Bob在非根结点x; Alice和Bob轮流走,每 ...

  7. bzoj 2463 [中山市选2009]谁能赢呢? 博弈

    [中山市选2009]谁能赢呢? Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3014  Solved: 2165[Submit][Status][D ...

  8. ***iOS学习之Table View的简单使用和DEMO示例(共Plain普通+Grouped分组两种)

    Table View简单描述: 在iPhone和其他iOS的很多程序中都会看到Table View的出现,除了一般的表格资料展示之外,设置的属性资料往往也用到Table View,Table View ...

  9. webpack体积优化篇二(GZ压缩)

    这里我列举几个常用的能够用于减少包体大小的插件,我们可以根据项目需求选择性的使用: compression-webpack-plugin :该插件能够将资源文件压缩为.gz文件,并且根据客户端的需求按 ...

  10. mybatis批量更新两种方式:1.修改值全部一样 2.修改每条记录值不一样

    Mybatis批量更新数据 mybatis批量更新两种方式:1.修改值全部一样 2.修改每条记录值不一样 mybatis批量更新两种方式:1.修改值全部一样 2.修改每条记录值不一样 mybatis批 ...