算法理论基础:

可行顶点标号

用l(v)表示顶点v的标号,w(uv)表示边(u,v)的权,对于赋权二分图G=(X,Y),若对每条边e=xy,均有l(x)+l(y)>=w(xy),则称这个标号为G的一个可行顶点标号

赋权二分图的可行顶点标号总是存在,一种平凡的可行顶点标号是:l(v)=max w(vy),v∈X y∈Y

                                                                                l(v)=0,v∈Y

相等子图

设G是一个赋权二分图,l是G的可行顶点标号,边(u,v)上的权为w(uv)。令El={xy∈E(G)|l(x)+l(y)=w(xy)},G中以El为边集的生成子图称为G的l相等子图,记为Gl,注意Gl    的顶点集与G的顶点集相同。

定理

设l是赋权二分图G的一个可行顶点标号,若相等子图有Gl有完美匹配M*,则M*是G的最大权完美匹配。

  

基本原理

该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。
 
KM算法的正确性基于以下定理:
若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。
首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配且Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。
这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。
初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。
我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:
1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。
2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。
4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。
5)到最后,X端每个点至少有一条线连着,Y端每个点有一条线连着,说明最后补充完的相等子图一定有完备匹配。(若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。)
现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:
Min{A[ i ]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。
 
时间复杂度
以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n^4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n^2)。
 
基本流程
(1)初始化可行顶标的值;
(2)用匈牙利算法寻找完备匹配;
(3)若未找到完备匹配则修改可行顶标的值;
(4)重复(2)(3)直到找到相等子图的完备匹配为止;

KM算法(Kuhn-Munkres)的更多相关文章

  1. 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  2. 二分图匹配--KM算法

    Kuhn-Munkres算法 KM算法,求完备匹配下的最大权匹配,时间复杂度O(\(n^3\)) 所谓的完备匹配就是在二部图中,x点集中的所有点都有对应的匹配 且 y点集中所有的点都有对应的匹配 ,则 ...

  3. 匈牙利算法与KM算法

    匈牙利算法 var i,j,k,l,n,m,v,mm,ans:longint; a:..,..]of longint; p,f:..]of longint; function xyl(x,y:long ...

  4. 【HDU2255】奔小康赚大钱-KM算法

    Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

  5. HDU2255-奔小康赚大钱-二分图最大权值匹配-KM算法

    二分图最大权值匹配问题.用KM算法. 最小权值的时候把权值设置成相反数 /*-------------------------------------------------------------- ...

  6. KM算法及其优化的学习笔记&&bzoj2539: [Ctsc2000]丘比特的烦恼

    感谢  http://www.cnblogs.com/vongang/archive/2012/04/28/2475731.html 这篇blog里提供了3个链接……基本上很明白地把KM算法是啥讲清楚 ...

  7. poj 2195 KM算法

    题目链接:http://poj.org/problem?id=2195 KM算法模板~ 代码如下: #include "stdio.h" #include "string ...

  8. hdu 2255 奔小康赚大钱--KM算法模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:有N个人跟N个房子,每个人跟房子都有一定的距离,现在要让这N个人全部回到N个房子里面去,要 ...

  9. HDU(2255),KM算法,最大权匹配

    题目链接 奔小康赚大钱 Time Limit: 1000/1000MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  10. 二分图 最大权匹配 km算法

    这个算法的本质还是不断的找增广路: KM算法的正确性基于以下定理:若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最 ...

随机推荐

  1. linux 下使用genymotion

    在官网下载genymotion http://www.genymotion.cn/ 然后进行下面操作 1.假设本机没有virtualbox 下载一个  能够通过指令 sudo apt-get inst ...

  2. Maven具体解释之仓库------本地仓库、远程仓库

    在Maven中,不论什么一个依赖.插件或者项目构建的输出.都能够称之为构件. Maven在某个统一的位置存储全部项目的共享的构件.这个统一的位置.我们就称之为仓库.(仓库就是存放依赖和插件的地方) 不 ...

  3. frameset怎样实现整个页面的跳转

    登录页面login.jsp,系统登录成功后展示mainLayout.jsp, 我如今用frameset框架把页面mainLayout.jsp分为三部分,head.jsp..left.jsp.right ...

  4. (十)Net Core项目使用Cookies (八)Net Core项目使用Controller之三-入参

    (十)Net Core项目使用Cookies 一.简介 1.Net Core可以直接使用Cookies,但是调用方式有些区别. 2.Net Core将Request和Response分开实现. 二.基 ...

  5. WPF中的常用布局 栈的实现 一个关于素数的神奇性质 C# defualt关键字默认值用法 接口通俗理解 C# Json序列化和反序列化 ASP.NET CORE系列【五】webapi整理以及RESTful风格化

    WPF中的常用布局   一 写在开头1.1 写在开头微软是一家伟大的公司.评价一门技术的好坏得看具体的需求,没有哪门技术是面面俱到地好,应该抛弃对微软和微软的技术的偏见. 1.2 本文内容本文主要内容 ...

  6. 字符识别OCR研究一(模板匹配&BP神经网络训练)

    摘 要 在MATLAB环境下利用USB摄像头採集字符图像.读取一帧保存为图像.然后对读取保存的字符图像,灰度化.二值化,在此基础上做倾斜矫正.对矫正的图像进行滤波平滑处理,然后对字符区域进行提取切割出 ...

  7. Swift 1.1语言第7章 函数和闭包

    Swift 1.1语言第7章  函数和闭包 在编程中,随着处理问题的越来越复杂.代码量飞速添加. 当中,大量的代码往往相互反复或者近似反复.假设不採有效方式加以解决.代码将非常难维护. 为了解决问题, ...

  8. c#实现播放器的集中方式

    http://www.cnblogs.com/iskyoole/archive/2012/03/25/2417181.html(原文链接地址) 一.使用vs自带的windows media play控 ...

  9. Flask的flask-sqlalchemy

    flask-sqlalchemy是Flask和SQLAlchemy的管理者 - db = SQLAlchemy() - 包含配置 - 包含ORM基类 - 包含create_all - engine - ...

  10. 炫酷的 CSS 形状(值得收藏)

    在今日头条中看到炫酷的 CSS 形状,就记录一下: 1.圆形 #circle { width: 100px; height: 100px; background: red; border-radius ...