【bzoj4568】【Scoi2016】幸运数字 (线性基+树上倍增)
Description
Input
Output
题解:
这首先一看,线性基啊!不过这是树上的,我们可以用树上的数据结构维护线性基。
于是就想到了倍增。
v[i][j] 表示从 i (包括)到其第 2j 个祖先(不包括)的线性基,每次查询往上跳,每次将线性基合并。
线性基的合并直接暴力,因为线性基只有60的长度,暴力合并不会耗太多时间。
剩下的就是裸的线性基了!!
CODE:
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std; int n,m,u[],v[],deg[];
double a[][],g[],res; void gauss(){
for(int i=,maxn=i;i<n;maxn=++i){
for(int j=i+;j<=n;j++)
if(fabs(a[j][i])>fabs(a[maxn][i]))maxn=j;
for(int j=;j<=n+;j++)swap(a[i][j],a[maxn][j]);
for(int j=i+;j<=n;j++){
if(fabs(a[j][i])<1e-)continue;
double s=a[j][i]/a[i][i];
for(int k=;k<=n+;k++)a[j][k]-=a[i][k]*s;
}
}
for(int i=n;i>=;i--){
for(int j=i+;j<=n;j++)
a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
}
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",u+i,v+i);
deg[u[i]]++,deg[v[i]]++;
}
a[][n+]=-,a[n][n]=;
for(int i=;i<=m;i++){
if(u[i]^n)a[u[i]][v[i]]=1.0/deg[v[i]];
if(v[i]^n)a[v[i]][u[i]]=1.0/deg[u[i]];
}
for(int i=;i<n;i++)a[i][i]=-;
gauss();
for(int i=;i<=m;i++)
g[i]=a[u[i]][n+]/deg[u[i]]+a[v[i]][n+]/deg[v[i]];
sort(g+,g+m+);
for(int i=;i<=m;i++)res+=g[i]*(m-i+);
printf("%.3f\n",res);
}
【bzoj4568】【Scoi2016】幸运数字 (线性基+树上倍增)的更多相关文章
- BZOJ4568: [Scoi2016]幸运数字(线性基 倍增)
题意 题目链接 Sol 线性基是可以合并的 倍增维护一下 然后就做完了?? 喵喵喵? // luogu-judger-enable-o2 #include<bits/stdc++.h> # ...
- 洛谷P3292 [SCOI2016] 幸运数字 [线性基,倍增]
题目传送门 幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的 ...
- bzoj4568 [Scoi2016]幸运数字 线性基+树链剖分
A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游览 A ...
- BZOJ 4568: [Scoi2016]幸运数字 [线性基 倍增]
4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合 ...
- 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增
P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...
- BZOJ 4568 [Scoi2016]幸运数字 ——线性基 倍增
[题目分析] 考虑异或的最大值,维护线性基就可以了. 但是有多次的询问,树剖或者倍增都可以. 想了想树剖动辄数百行的代码. 算了,我还是写倍增吧. 注:被位运算和大于号的优先级坑了一次,QaQ [代码 ...
- P3292 [SCOI2016]幸运数字 [线性基+倍增]
线性基+倍增 // by Isaunoya #include <bits/stdc++.h> using namespace std; #define rep(i, x, y) for ( ...
- P3292 [SCOI2016]幸运数字 线性基
正解:线性基+倍增 解题报告: 先放下传送门QAQ 然后这题,其实没什么太大的技术含量,,,?就几个知识点套在一起,除了代码长以外没任何意义,主要因为想复习下线性基的题目所以还是写下,,, 随便写下思 ...
- [SCOI2016]幸运数字 线性基
题面 题面 题解 题面意思非常明确:求树上一条链的最大异或和. 我们用倍增的思想. 将这条链分成2部分:x ---> lca , lca ---> y 分别求出这2个部分的线性基,然后合并 ...
- BZOJ.4516.[SCOI2016]幸运数字(线性基 点分治)
题目链接 线性基可以\(O(log^2)\)暴力合并.又是树上路径问题,考虑点分治. 对于每个点i求解 LCA(u,v)==i 时的询问(u,v),只需求出这个点到其它点的线性基后,暴力合并. LCA ...
随机推荐
- 百度影棒安装apk方法
确保影棒和电脑接入家中同一WIFI中,开启影棒USB调试,手机端运行悟空助手或沙发管家等软件,之后无线推送需要安装的APK. 安装文件管理apk后,可以使用U盘安装.
- SQLite C/C++ 教程
目录 1安装 2 C/C++ Interface APIs 3连接到数据库 4创建表 5插入操作 6更新操作 7删除操作 安装 在我们开始使用SQLite在C / C++程序,我们需要确保SQLite ...
- 访问修饰符(C# 参考)
第一篇 就抄写了一下下MSDN上面的东西练练手吧!!! 访问修饰符是一些关键字,用于指定声明的成员或类型的可访问性. 本节介绍四个访问修饰符: public protected ...
- 用valgrind检查内存问题
Valgrind Valgrind作为一个免费且优秀的工具包,平时大部分人可能都是使用valgrind检测内存问题,如内存泄露,越界等. Valgrind工具包包含多个工具,如Memcheck,Cac ...
- sql mybatis 使用concat乱码
先贴代码,这是sql查询里面 select id,name,sex,phone,present,adder, CONCAT("从业",experience,"年" ...
- Linux之centos7 VMware安装教程
Linux系统安装 下面是centOS7的安装过程 VMware 系统搭建 1 新建虚拟机 2 选择自定义 3 选择稍后安装操作系统 4 选择操作系统的版本Linux centos64位 5 选择处理 ...
- javase(3)_二叉树
// 1.求二叉树中的节点个数 // 2.求二叉树的深度 // 3.前序遍历,中序遍历,后序遍历 // 4.分层遍历二叉树(按层次从上往下,从左往右) // 5.将二叉查找树变为有序的双向链表 // ...
- javaEE(16)_Servlet监听器
一.监听器原理 1.监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 2.监听器典型案例 ...
- 17条 Swift 最佳实践规范
本文由CocoaChina译者小袋子(博客)翻译自schwa的github主页原文作者:schwa 这是一篇 Swift 软件开发的最佳实践教程. 前言 这篇文章是我根据在 SwiftGraphics ...
- C++系统学习之二:字符串
上一篇文章主要学习的是C++的基本类型,它们是C++语言直接定义的,它们体现了计算机硬件本身具备的能力.而本篇文章将主要学习内置类型之外的标准库所定义的类型,分别是string和vector,此外还将 ...