Description

A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5 和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中可以保留的最大幸运值是多少。

Input

第一行包含 2 个正整数 n ,q,分别表示城市的数量和旅行者数量。第二行包含 n 个非负整数,其中第 i 个整数 Gi 表示 i 号城市的幸运值。随后 n-1 行,每行包含两个正整数 x ,y,表示 x 号城市和 y 号城市之间有一条道路相连。随后 q 行,每行包含两个正整数 x ,y,表示这名旅行者的旅行计划是从 x 号城市到 y 号城市。N<=20000,Q<=200000,Gi<=2^60

Output

输出需要包含 q 行,每行包含 1 个非负整数,表示这名旅行者可以保留的最大幸运值。
 

题解:

这首先一看,线性基啊!不过这是树上的,我们可以用树上的数据结构维护线性基。

于是就想到了倍增。

v[i][j] 表示从 i (包括)到其第 2j 个祖先(不包括)的线性基,每次查询往上跳,每次将线性基合并。

线性基的合并直接暴力,因为线性基只有60的长度,暴力合并不会耗太多时间。

剩下的就是裸的线性基了!!

CODE:

 #include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std; int n,m,u[],v[],deg[];
double a[][],g[],res; void gauss(){
for(int i=,maxn=i;i<n;maxn=++i){
for(int j=i+;j<=n;j++)
if(fabs(a[j][i])>fabs(a[maxn][i]))maxn=j;
for(int j=;j<=n+;j++)swap(a[i][j],a[maxn][j]);
for(int j=i+;j<=n;j++){
if(fabs(a[j][i])<1e-)continue;
double s=a[j][i]/a[i][i];
for(int k=;k<=n+;k++)a[j][k]-=a[i][k]*s;
}
}
for(int i=n;i>=;i--){
for(int j=i+;j<=n;j++)
a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
}
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",u+i,v+i);
deg[u[i]]++,deg[v[i]]++;
}
a[][n+]=-,a[n][n]=;
for(int i=;i<=m;i++){
if(u[i]^n)a[u[i]][v[i]]=1.0/deg[v[i]];
if(v[i]^n)a[v[i]][u[i]]=1.0/deg[u[i]];
}
for(int i=;i<n;i++)a[i][i]=-;
gauss();
for(int i=;i<=m;i++)
g[i]=a[u[i]][n+]/deg[u[i]]+a[v[i]][n+]/deg[v[i]];
sort(g+,g+m+);
for(int i=;i<=m;i++)res+=g[i]*(m-i+);
printf("%.3f\n",res);
}

【bzoj4568】【Scoi2016】幸运数字 (线性基+树上倍增)的更多相关文章

  1. BZOJ4568: [Scoi2016]幸运数字(线性基 倍增)

    题意 题目链接 Sol 线性基是可以合并的 倍增维护一下 然后就做完了?? 喵喵喵? // luogu-judger-enable-o2 #include<bits/stdc++.h> # ...

  2. 洛谷P3292 [SCOI2016] 幸运数字 [线性基,倍增]

    题目传送门 幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的 ...

  3. bzoj4568 [Scoi2016]幸运数字 线性基+树链剖分

    A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游览 A ...

  4. BZOJ 4568: [Scoi2016]幸运数字 [线性基 倍增]

    4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合 ...

  5. 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增

    P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...

  6. BZOJ 4568 [Scoi2016]幸运数字 ——线性基 倍增

    [题目分析] 考虑异或的最大值,维护线性基就可以了. 但是有多次的询问,树剖或者倍增都可以. 想了想树剖动辄数百行的代码. 算了,我还是写倍增吧. 注:被位运算和大于号的优先级坑了一次,QaQ [代码 ...

  7. P3292 [SCOI2016]幸运数字 [线性基+倍增]

    线性基+倍增 // by Isaunoya #include <bits/stdc++.h> using namespace std; #define rep(i, x, y) for ( ...

  8. P3292 [SCOI2016]幸运数字 线性基

    正解:线性基+倍增 解题报告: 先放下传送门QAQ 然后这题,其实没什么太大的技术含量,,,?就几个知识点套在一起,除了代码长以外没任何意义,主要因为想复习下线性基的题目所以还是写下,,, 随便写下思 ...

  9. [SCOI2016]幸运数字 线性基

    题面 题面 题解 题面意思非常明确:求树上一条链的最大异或和. 我们用倍增的思想. 将这条链分成2部分:x ---> lca , lca ---> y 分别求出这2个部分的线性基,然后合并 ...

  10. BZOJ.4516.[SCOI2016]幸运数字(线性基 点分治)

    题目链接 线性基可以\(O(log^2)\)暴力合并.又是树上路径问题,考虑点分治. 对于每个点i求解 LCA(u,v)==i 时的询问(u,v),只需求出这个点到其它点的线性基后,暴力合并. LCA ...

随机推荐

  1. (四)maven之查找jar包坐标,选择jar包版本

    ①    先访问http://www.mvnrepository.com/  ,这个地址是maven的公共库. ②   以spring core的jar包为例.在页面的最上方的中间,输入spring ...

  2. UVA1515 Pool construction (最小割模型)

    如果不允许转化'#'和'.'的话,那么可以直接在'#'和'.'之间连容量为b的边,把所有'#'和一个源点连接, 所有'.'和一个汇点连接,流量不限,那么割就是建围栏(分割'#'和'.')的花费. 问题 ...

  3. build.sbt的定义格式

    一个简单的build.sbt文件内容如下: name := "hello" // 项目名称 organization := "xxx.xxx.xxx" // 组 ...

  4. 优化SQL语句的方法

    首先,对于where语句的注意事项: 1.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where nu ...

  5. oracle调用子存储过程+游标循环实例

    一,有子节点的部门的子节点的排序,调用子存储过程 CREATE OR REPLACE PROCEDURE "PRO_INIT_SORT" AS CURSOR cur_departm ...

  6. Bootstrap历练实例:响应式导航栏

    响应式的导航栏 为了给导航栏添加响应式特性,您要折叠的内容必须包裹在带有 classes .collapse..navbar-collapse 的 <div> 中.折叠起来的导航栏实际上是 ...

  7. 求NEXT数组和KMP匹配的两种写法

    注释掉的是我不喜欢的写法. //计算串str的next数组 void getnext(char *str){ int len=strlen(str); ,k=-; next[]=-; while(j& ...

  8. mysql:10道mysql查询语句面试题

    表结构 学生表student(id,name) 课程表course(id,name) 学生课程表student_course(sid,cid,score) 创建表的sql代码 ```sql creat ...

  9. linux文件权限更改命令chmod及数字权限

    chmod -change file mode bits :更改文件权限 chmod是用来改变文件或者目录权限的命令,但只有文件的属主和超级用户(root)才有这种权限. 更改文件权限的2种方式: 一 ...

  10. Python解释器镜像源修改

    目录 Windows Mac 这篇文章将解除你使用python的pip install xxx受到的网速限制,如果只是下载较小的第三方库,可以尝试pip --default-timeout=100 i ...