Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP
题目链接:https://vjudge.net/problem/CodeForces-149D
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007(109 + 7).
(())
12
(()())
40
()
4
Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.


The two ways of coloring shown below are incorrect.


题解:
给出一串合法的括号,为括号上色,有如下原则:1)一对括号有且仅有一个是涂上颜色的, 2)颜色只有两种, 3)相邻的括号的颜色不允许相同(除非都没上色)。问:满足上述三个条件的上色方案有多少种?
1.由于给出的括号序列是合法的,即左括号与右括号一一对应。所以我们可以先预处理出每个左括号所对应的右括号。
2.详情请看代码注释。
写法一(人工枚举):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; LL dp[MAXN][MAXN][][];
int top, Stack[MAXN], match[MAXN];
char s[MAXN]; //区间为[l, r], isL为l-1处是否上色, isR为r+1处是否上色。
LL dfs(int l, int r, bool isL, bool isR)
{
if(l>=r) return ; //因为是乘法,所以遇到非法位置,就返回1。要是加法就return0或者1(实际情况实际考虑)。
if(dp[l][r][isL][isR]!=-) return dp[l][r][isL][isR]; LL ret = ;
int k = match[l]; //找到与最左端的左括号匹配的右括号 if(!isL) //首先考虑为左括号上色。如果l-1处没有上色, 那么左括号就可以上两种颜色
ret = (ret + (2LL*dfs(l+, k-, true, false)*dfs(k+, r, false, isR))%MOD)%MOD;
else //否则, 左括号只能上一种颜色,与l-1处括号相对的颜色
ret = (ret + (1LL*dfs(l+, k-, true, false)*dfs(k+, r, false, isR))%MOD)%MOD;
if(k!=r || (k==r&&!isR) ) //其次为右括号上色。如果右括号不在右端点,或者在右端点但是r+1处没有上色,则可上两种颜色
ret = (ret + (2LL*dfs(l+, k-, false, true)*dfs(k+, r, true, isR))%MOD)%MOD;
else //否则,右括号在最右端且r+1处上了颜色,那么右括号只能上一种颜色。
ret = (ret + (1LL*dfs(l+, k-, false, true)*dfs(k+, r, true, isR))%MOD)%MOD; return dp[l][r][isL][isR] = ret;
} int main()
{
while(scanf("%s", s+)!=EOF)
{
int n = strlen(s+);
top = ;
for(int i = ; i<=n; i++) //为左括号找到匹配的右括号
{
if(s[i]=='(') Stack[top++] = i;
else match[Stack[--top]] = i;
} memset(dp, -, sizeof(dp));
dfs(, n, , );
printf("%lld\n", dp[][n][][]);
}
}
写法二(for枚举,推荐):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; LL dp[MAXN][MAXN][][];
int top, Stack[MAXN], match[MAXN];
char s[MAXN]; //区间为[l, r],Lcol为l-1处的颜色, Rcol为r+1处的颜色,0代表没上色,1和2分别代表两种不同的颜色
LL dfs(int l, int r, int Lcol, int Rcol)
{
if(l>=r) return ; //因为是乘法,所以遇到非法位置,就返回1。要是加法就return0或者1(实际情况实际考虑)。
if(dp[l][r][Lcol][Rcol]!=-) return dp[l][r][Lcol][Rcol]; LL ret = ;
int k = match[l]; //找到与最左端的左括号匹配的右括号
for(int lc = ; lc<; lc++) //枚举这个括号的着色情况,并且需要去除掉非法的情况
for(int rc = ; rc<; rc++)
{
if((lc&&rc)||(!lc&&!rc)) continue; //如果两个括号都没涂色或者都涂上颜色,非法
if(lc && lc==Lcol) continue; //如果l-1处涂上了颜色,且l处也要涂上相同的颜色, 非法
if(k==r && rc && rc==Rcol) continue; //如果匹配的右括号在最右端,且r+1处涂上了颜色,又尝试为
//右括号涂上相同的颜色,非法。如果右括号不在最右端,那么就无需
//考虑r+1处的着色情况了,因为右括号右边的括号必定没有上色。
ret = (ret+(1LL*dfs(l+, k-, lc, rc)*dfs(k+, r, rc, Rcol))%MOD)%MOD; //统计合法的情况
}
return dp[l][r][Lcol][Rcol] = ret;
} int main()
{
while(scanf("%s", s+)!=EOF)
{
int n = strlen(s+);
top = ;
for(int i = ; i<=n; i++) //为左括号找到匹配的右括号
{
if(s[i]=='(') Stack[top++] = i;
else match[Stack[--top]] = i;
} memset(dp, -, sizeof(dp));
printf("%lld\n", dfs(, n, , ));
}
}
Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP的更多相关文章
- Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp
题目链接: http://codeforces.com/problemset/problem/149/D D. Coloring Brackets time limit per test2 secon ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)
题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...
- Codeforces Round #336 (Div. 2) D. Zuma(区间DP)
题目链接:https://codeforces.com/contest/608/problem/D 题意:给出n个宝石的颜色ci,现在有一个操作,就是子串的颜色是回文串的区间可以通过一次操作消去,问最 ...
- Codeforces Round #367 (Div. 2) C. Hard problem(DP)
Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...
- codeforces 149D Coloring Brackets (区间DP + dfs)
题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- codeforce 149D Coloring Brackets 区间DP
题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...
随机推荐
- 清清月儿.net学习技术资料网站
原文发布时间为:2008-08-03 -- 来源于本人的百度文章 [由搬家工具导入] http://blog.csdn.net/21aspnet/
- leetcode 15. 3Sum 二维vector
传送门 15. 3Sum My Submissions Question Total Accepted: 108534 Total Submissions: 584814 Difficulty: Me ...
- elasticsearch入门使用(三) Query DSL
Elasticsearch Reference [6.2] » Query DSL 参考官方文档 :https://www.elastic.co/guide/en/elasticsearch/refe ...
- hdu 4587 2013南京邀请赛B题/ / 求割点后连通分量数变形。
题意:求一个无向图的,去掉两个不同的点后最多有几个连通分量. 思路:枚举每个点,假设去掉该点,然后对图求割点后连通分量数,更新最大的即可.算法相对简单,但是注意几个细节: 1:原图可能不连通. 2:有 ...
- codechef Tree and Queries Solved
题目链接: https://www.codechef.com/problems/IITK1P10 大概是:修改点值,求子树节点为0有多少个, DFS序后,BIT 询问,修改 ; { ...
- Hbase调用JavaAPI实现批量导入操作
将手机上网日志文件批量导入到Hbase中.操作步骤: 1.将日志文件(请下载附件)上传到HDFS中,利用hadoop的操作命令上传:hadoop fs -put input / 2.创建Hbase ...
- ARM汇编指令MCR/MRC学习
MCR指令将ARM处理器的寄存器中的数据传送到协处理器的寄存器中.假设协处理器不能成功地运行该操作.将产生没有定义的指令异常中断. 指令的语法格式: MCR{<cond>} p15, 0, ...
- JAVA_MyEclipse如何加载Tomcat
注意Tomcat不要放到Program Files这种有空格的路径下面!,下图所示是错误的
- PHP开发的一些趣事
配置运行环境studyPhp: http://www.phpstudy.net/phpstudy/PhpStudy20180211.zip PHP运行环境:5.4 首先做的是一个表单测试吧 <! ...
- indexOf 和 lastIndexOf 的区别
indexOf 和 lastIndexOf 是什么? indexOf 和 lastIndexOf 都是索引文件 indexOf 是查某个指定的字符串在字符串首次出现的位置(索引值) (也就是从前往后查 ...