题目链接:http://poj.org/problem?id=3660

Cow Contest
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13085   Accepted: 7289

Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ NA ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2

Source

 
 
 
题解:
1.建图:如果A>B,则A—>B建一条边(B—>A也可以,但只能规定方向地建一条边)。
2.用Floyd求出传递闭包。
3.对于当前点X,如果与剩下的n-1个点都有联系,那么X的位置是可以确定的。
 
 
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define rep(i,a,n) for(int (i) = a; (i)<=(n); (i)++)
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e2+; int n, m;
bool gra[MAXN][MAXN]; int main()
{
while(scanf("%d%d", &n,&m)!=EOF)
{
memset(gra, false, sizeof(gra));
for(int i = ; i<=m; i++)
{
int u, v;
scanf("%d%d", &u,&v);
gra[u][v] = true;
} for(int k = ; k<=n; k++) //求传递闭包
for(int i = ; i<=n; i++)
for(int j = ; j<=n; j++)
gra[i][j] = gra[i][j] || (gra[i][k]&&gra[k][j]); int ans = ;
for(int i = ; i<=n; i++)
{
int cnt = ;
for(int j = ; j<=n; j++)
if( gra[i][j] || gra[j][i] )
cnt++;
if(cnt==n-) //i与剩下的n-1个数都能确定关系,则i的位置确定
ans++;
} printf("%d\n", ans);
}
}

POJ3660 Cow Contest —— Floyd 传递闭包的更多相关文章

  1. POJ3660——Cow Contest(Floyd+传递闭包)

    Cow Contest DescriptionN (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a prog ...

  2. POJ-3660 Cow Contest Floyd传递闭包的应用

    题目链接:https://cn.vjudge.net/problem/POJ-3660 题意 有n头牛,每头牛都有一定的能力值,能力值高的牛一定可以打败能力值低的牛 现给出几头牛的能力值相对高低 问在 ...

  3. POJ3660 Cow Contest floyd传递闭包

    Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...

  4. POJ3660:Cow Contest(Floyd传递闭包)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16941   Accepted: 9447 题目链接 ...

  5. POJ-3660.Cow Contest(有向图的传递闭包)

      Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17797   Accepted: 9893 De ...

  6. ACM: POJ 3660 Cow Contest - Floyd算法

    链接 Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Descri ...

  7. POJ 3660 Cow Contest(传递闭包floyed算法)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5989   Accepted: 3234 Descr ...

  8. POJ 3660 Cow Contest【传递闭包】

    解题思路:给出n头牛,和这n头牛之间的m场比赛结果,问最后能知道多少头牛的排名. 首先考虑排名怎么想,如果知道一头牛打败了a头牛,以及b头牛打赢了这头牛,那么当且仅当a+b+1=n时可以知道排名,即为 ...

  9. poj 3660 Cow Contest (传递闭包)

    /* floyd 传递闭包 开始Floyd 之后统计每个点能到的或能到这个点的 也就是他能和几个人确定胜负关系 第一批要有n-1个 然后每次减掉上一批的人数 麻烦的很 复杂度上天了.... 正难则反 ...

随机推荐

  1. Fruit Ninja

    Fruit Ninja 时间限制:C/C++ 5秒,其他语言10秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 Fruit Ni ...

  2. array的用法(关于动态选择值)

  3. hdu 4882 /按排顺序使序列最优问题

    题意: 安排一个序列,该序列每个数有俩个属性:t[i].val[i].计算一个点的价值:到目前为止的总时间*val[i].,,求  安排顺序后使得 计算所有点的价值之和最小. 思路:对于任意相邻俩项, ...

  4. 装B技能GET起来!Apple Pay你会用了吗?

    科技圈儿有一个自带光环的品牌 它每次一有任何动静 不用宣传 也不用刻意营销 消息还是能传天下 2月18日 你敢说你的朋友圈儿没有被下面这个词儿刷屏? Apple Pay 这不,我就跟着凑凑热闹,开个小 ...

  5. Java_AOP原理

    AOP : 面向切面编程 在程序设计中,我们需要满足高耦合低内聚,所以编程需满足六大原则,一个法则. AOP面向切面编程正是为了满足这些原则的一种编程思想. 一.装饰者模式: 当我们需要给对象增加功能 ...

  6. Ubuntu 16.04安装微信

    微信没有出Linux的版本,但是可以通过以下方式解决: 1.使用网页版,除了没有公众号之后,一切都没问题,包括传文件等. 网页登录地址:https://wx.qq.com/ 2.使用第三方版本,只不过 ...

  7. 【深入Java虚拟机】之五:多态性实现机制——静态分派与动态分派

    方法解析 Class文件的编译过程中不包含传统编译中的连接步骤,一切方法调用在Class文件里面存储的都只是符号引用,而不是方法在实际运行时内存布局中的入口地址.这个特性给Java带来了更强大的动态扩 ...

  8. jinjia2模板学习

    http://docs.jinkan.org/docs/jinja2/templates.html#

  9. ActiveMQ消息的延时和定时投递

    ActiveMQ对消息延时和定时投递做了很好的支持,其内部启动Scheduled来对该功能支持,也提供了一个封装的消息类型:org.apache.activemq.ScheduledMessage,只 ...

  10. 用C++实现约瑟夫环的问题

    约瑟夫问题是个有名的问题:N个人围成一圈.从第一个開始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉. 比如N=6,M=5.被杀掉的人的序号为5,4,6.2.3.最后剩下1号. 假定在圈子里前K ...