BZOJ2694: Lcm
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2694
题解:令f[i]表示i是否有平方因子,则f[i]是积性函数,mu[i]表示莫比乌斯函数。
经过balabala的推导,我们得出ans=sigma(f[i/j]*mu[j]*j*j*sum(n/i,m/i))) sum(x,y)=x*(x+1)/2*y*(y+1)/2
然后我们定义新函数 g[i]=sigma(f[i/d]*mu[d]*d*d) 因为积性函数的狄利克雷卷积仍然是积性函数,所以我们考虑把g数组线筛出来,然后就可以做到sqrt(n)回答询问了。
考虑i%p[j]==0的这部分(初值和i%p[j]!=0可以很简单算出来),如果k=i*p[j]中有p[j]的次数超过2,那么g[k]=0
这是因为我们要在f 和 mu 上分 p[j]的指数,>2时由鸽巢原理知必有一个分到2个以上,那么乘积就是0.
否则 p[j] 的指数为2,我们必须在 f 上分一个,mu上分一个,这样g[k]=g[i/p[j]]*-p[j]*p[j]*p[j] (第一个p[j]是分到f上的,负号是给 mu 的,p[j]*p[j]则是d*d,还是利用了积性函数的性质)
既然是积性函数并且i/p[j]和p[j]*p[j]互质,那么g[k]就等于g[t]*g[p[j]*p[j]] 注意t==1时要特判。
然后这题就做完了。
因为模数奇特所以直接爆int即可。
代码:
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 4000000+5 #define maxm 4000000 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go) #define for5(n,m) for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) #define mod 1073741823 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
int tot,p[maxn],g[maxn];
bool v[maxn];
void get()
{
g[]=;
for2(i,,maxm)
{
if(!v[i])p[++tot]=i,g[i]=i-i*i;
for1(j,tot)
{
int k=i*p[j];
if(k>maxm)break;
v[k]=;
if(i%p[j])g[k]=g[i]*g[p[j]];
else
{
int t=i/p[j];
if(t%p[j]==)g[k]=;
else g[k]=-g[t]*p[j]*p[j]*p[j];
break;
}
}
}
for1(i,maxm)g[i]+=g[i-];
}
inline int sum(int n,int m)
{
return n*(n+)*m*(m+)/;
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout);
get(); int T=read();
while(T--)
{
int n=read(),m=read(),ans=;
if(n>m)swap(n,m);
for(int i=,j;i<=n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans+=sum(n/i,m/i)*(g[j]-g[i-]);
}
printf("%d\n",ans&mod);
} return ; }
BZOJ2694: Lcm的更多相关文章
- BZOJ2694 Lcm 【莫比乌斯反演】
BZOJ2694 Lcm Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample I ...
- BZOJ2694:Lcm——包看得懂/看不懂题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2694 Description 对于任意的>1的n gcd(a, b)不是n^2的倍数 也就是说 ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- CodeBlocks及LCM应用
以下是在开发过程中遇到的一些细节点: 1)called after throwing an instance of std::bad_alloc 此问题是由于publish(data),当中data赋 ...
- LCM 轻量级通信组件
LCM和ZMQ比较 http://www.doc88.com/p-6711552253536.html 基于LCM和ZeroMQ的进程间通信研究 2.简介 LCM(Lightweight Commuc ...
- uva12546. LCM Pair Sum
uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...
- UVA 10791 Minimum Sum LCM(分解质因数)
最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...
- LCM在Kernel中的代码分析
lcm的分析首先是mtkfb.c 1.mtk_init中platform_driver_register(&mtkfb_driver)注册平台驱动 panelmaster_init(); DB ...
随机推荐
- POI中设置Excel单元格格式样式(居中,字体,边框等)
创建sheet什么的就不多说了,直接进入正题 HSSFCellStyle cellStyle = wb.createCellStyle(); 一.设置背景色: cellStyle.setFillF ...
- varnish状态引擎1
vcl: state engine:各引擎之间存一定程度上的相关性:前一个engine如果可以有多种下游engine,则上游engine需要用return指明 要转移的下游engine vcl_rec ...
- 图片来自腾讯,未经授权不可引用,js解决方法
问题记录,解决后来更新 js伪造Referer, 外链图片让用户浏览时,不发送 referer 字段给原网站的方法 A 网站引用了 B 站的 图片 <img src="b_url&qu ...
- mac brew install redis
在mac 下安装redis 执行brew install redis ==> Downloading http://download.redis.io/releases/redis-2.8.19 ...
- 在PyQt中直接使用ui文件并加载qrc资源文件
1. 用Qt设计师创建一个包含qrc资源文件的ui文件 2.打开cmd使用以下命令把qrc资源文件转换成十六进制的py文件 pyrcc4 -o C:\res.py C:\res.qrc pyrcc4 ...
- 禁止生成文件Thumbs.db
Thumbs.db是一个用于Microsoft Windows XP.Windows7 或 mac os x缓存Windows Explorer的缩略图的文件.Thumbs.db保存在每一个包含图片或 ...
- “Guess the number” game
项目描述:https://class.coursera.org/interactivepython-004/human_grading/view/courses/972072/assessments/ ...
- .NET开源工作流RoadFlow-流程设计-流程步骤设置-数据设置
数据设置是控制在流程处理过程中,当前步骤的数据显示与编辑状态,控制当前步骤哪些字段为只读,隐藏或可编辑.需要配合表单设计器使用.
- Cygwin下软件安装 - apt-cyg
安装了cygwin,但不能像centos上装yum,装东西很不方便.找了下可以用apt-cyg来安装软件. 1.下载apt-cyg $ wget raw.github.com/transcode-op ...
- SaaS应用“正益工作”发布,为大中型企业轻松构建移动门户
6月24日,以“平台之上,应用无限”为主题的2016 AppCan移动开发者大会,在北京国际会议中心隆重举行,逾1500名移动开发者一起见证了此次大会盛况. 会上,在专家领导.技术大咖.移动开发者的共 ...