最优间隔分类器(optimal margin classifier

重新回到SVM的优化问题:

我们将约束条件改写为:

从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也就是说这些约束式,对于其他的不在线上的点(),极值不会在他们所在的范围内取得,此时前面的系数。注意每一个约束式实际就是一个训练样本。

看下面的图:

实线是最大间隔超平面,假设×号的是正例,圆圈的是负例。在虚线上的点就是函数间隔是1的点,那么他们前面的系数,其他点都是。这三个点称作支持向量。构造拉格朗日函数如下:

注意到这里只有没有是因为原问题中没有等式约束,只有不等式约束。

下面我们按照对偶问题的求解步骤来一步步进行,

首先求解的最小值,对于固定的的最小值只与w和b有关。对w和b分别求偏导数。

并得到

将上式带回到拉格朗日函数中得到,此时得到的是该函数的最小值(目标函数是凸函数)

代入后,化简过程如下:

最后得到

由于最后一项是0,因此简化为

这里我们将向量内积表示为

此时的拉格朗日函数只包含了变量。然而我们求出了才能得到w和b。

接着是极大化的过程

前面提到过对偶问题和原问题满足的几个条件,首先由于目标函数和线性约束都是凸函数,而且这里不存在等式约束h。存在w使得对于所有的i,。因此,一定存在使得是原问题的解,是对偶问题的解。在这里,求就是求了。

如果求出了,根据即可求出w(也是,原问题的解)。然后

即可求出b。即离超平面最近的正的函数间隔要等于离超平面最近的负的函数间隔。

关于上面的对偶问题如何求解,可参见SMO算法。

这里考虑另外一个问题,由于前面求解中得到

我们通篇考虑问题的出发点是,根据求解得到的,我们代入前式得到

也就是说,以前新来的要分类的样本首先根据w和b做一次线性运算,然后看求的结果是大于0还是小于0,来判断正例还是负例。现在有了,我们不需要求出w,只需将新来的样本和训练数据中的所有样本做内积和即可。那有人会说,与前面所有的样本都做运算是不是太耗时了?其实不然,我们从KKT条件中得到,只有支持向量的,其他情况。因此,我们只需求新来的样本和支持向量的内积,然后运算即可。这种写法为下面要提到的核函数(kernel)做了很好的铺垫。

4. SVM分类器求解(2)的更多相关文章

  1. 3. SVM分类器求解(1)——Lagrange duality

    先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 是等式约束 ...

  2. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  3. 菜鸟之路——机器学习之SVM分类器学习理解以及Python实现

    SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper ...

  4. 自己训练SVM分类器进行HOG行人检测

    正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体. 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不 ...

  5. Python图像处理(15):SVM分类器

    快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 在opencv中支持SVM分类器.本文尝试在python中调用它. 和前面的贝叶斯分类器一样,SV ...

  6. 线性SVM分类器实战

    1 概述 基础的理论知识参考线性SVM与Softmax分类器. 代码实现环境:python3 2 数据处理 2.1 加载数据集 将原始数据集放入"data/cifar10/"文件夹 ...

  7. SVM分类器实现实例

    我正在做一个关于SVM的小项目,在我执行验证SVM训练后的模型的时候,得到的report分数总是很高,无论是召回率(查全率).精准度.还是f1-score都很高: 图1 分类器分数report 但是, ...

  8. 大数据-10-Spark入门之支持向量机SVM分类器

    简介 支持向量机SVM是一种二分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机学习方法包含3种模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时 ...

  9. 支持向量机 (SVM)分类器原理分析与基本应用

    前言 支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥.其理论优美,发展相对完善,是非常受到推崇的算法. 本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO. 另外还将讲解 ...

随机推荐

  1. Visaul Studio 常用快捷键的动画演示

    从本篇文章开始,我将会陆续介绍提高 VS 开发效率的文章,欢迎大家补充~ 在进行代码开发的时候,我们往往会频繁的使用键盘.鼠标进行协作,但是切换使用两种工具会影响到我们的开发速度,如果所有的操作都可以 ...

  2. ajax

    常见的HTTP状态码状态码:200 请求成功.一般用于GET和POST方法 OK301 资源移动.所请求资源移动到新的URL,浏览器自动跳转到新的URL Moved Permanently304 未修 ...

  3. shell简介

    Shell作为命令语言,它交互式地解释和执行用户输入的命令:作为程序设计语言,它定义了各种变量和参数,并提供了许多在高级语言中才具有的控制结构,包括循环和分支. shell使用的熟练程度反映了用户对U ...

  4. 23种设计模式--观察者模式-Observer Pattern

    一.观察者模式的介绍      观察者模式从字面的意思上理解,肯定有两个对象一个是观察者,另外一个是被观察者,观察者模式就是当被观察者发生改变得时候发送通知给观察者,当然这个观察者可以是多个对象,在项 ...

  5. gulp详细入门教程

    本文链接:http://www.ydcss.com/archives/18 gulp详细入门教程 简介: gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优 ...

  6. JdbcTemplate+PageImpl实现多表分页查询

    一.基础实体 @MappedSuperclass public abstract class AbsIdEntity implements Serializable { private static ...

  7. 谈一谈NOSQL的应用,Redis/Mongo

    1.心路历程 上年11月份来公司了,和另外一个同事一起,做了公司一个移动项目的微信公众号,然后为了推广微信公众号,策划那边需要我们做一些活动,包括抽奖,投票.最开始是没有用过redis的,公司因为考虑 ...

  8. 深入理解CSS六种颜色模式

    前面的话 赏心悦目的颜色搭配让人感到舒服,修改元素颜色的功能让人趋之若鹜.但颜色规划不当,会让网站用户无所适从.颜色从<font color="">发展至今,保留了很多 ...

  9. bzoj3037--贪心

    题目大意: applepi手里有一本书<创世纪>,里面记录了这样一个故事--上帝手中有着N 种被称作"世界元素"的东西,现在他要把它们中的一部分投放到一个新的空间中去以 ...

  10. TYPESDK手游聚合SDK服务端设计思路与架构之一:应用场景分析

    TYPESDK 服务端设计思路与架构之一:应用场景分析 作为一个渠道SDK统一接入框架,TYPESDK从一开始,所面对的需求场景就是多款游戏,通过一个统一的SDK服务端,能够同时接入几十个甚至几百个各 ...