洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)
题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的时候,所以思路就是先找出每个节点被几个后缀经过,这显然把边反转倒着找就可以了,然后他会被出现次数sz个串经过。
出现次数等于parent树子树中np类节点的个数,这跑个dfs就好了,一个相同前缀产生的贡献是sz*(sz-1)/2
然后思考一个点可能代表多个子串,但是他们的出现次数都是相同的,所以单个点的贡献为上面的单个贡献再乘上一个有几个子串
子串的个数为parent树父亲节点的最大长度减去该节点的最大长度
这样子在从根开始dfs,如果经过某个点只有一个后缀经过,就说明lcp结束了,就不用再搜该点了。
上面就求出了lcp的和
至于前面那个式子,只需要打个表找个规律发现是(n-1)*n*(n+1)/2就可以了
虽然常数大点但是还是后缀自动机复杂度的
但其实不用这么复杂,只要翻过来就可以建出原串后缀树,lcp就是后缀树的两个节点的lca,跑个树形dp就可以了。
代码因为没用链式前向星存边所以不开o2会t,但还是贴一下吧
#include<bits/stdc++.h>
#define N 1000010
using namespace std; int n;
int gg=; struct SAM
{
struct point
{
int son[],fa,len,mx;
}t[N]; int cnt=,last=;
int f[N],sz[N];
bool vis[N];
vector<int> g[N],e[N];
long long lcp=0ll; void add(int c)
{
int p=last;
int np=++cnt;
t[np].len=t[p].len+;
sz[np]=;
while(p&&(!t[p].son[c]))
{
t[p].son[c]=np;
p=t[p].fa;
}
if(!p) t[np].fa=;
else
{
int q=t[p].son[c],nq;
if(t[p].len+==t[q].len)
{
t[np].fa=q;
}
else
{
nq=++cnt;
t[nq]=t[q];
t[nq].len=t[p].len+;
t[q].fa=t[np].fa=nq;
while(p&&(t[p].son[c]==q))
{
t[p].son[c]=nq;
p=t[p].fa;
}
}
}
last=np;
} void dfs(int now)
{
t[now].mx=t[now].len-t[t[now].fa].len;
for(int i=;i<;i++)
{
if(t[now].son[i]) e[t[now].son[i]].push_back(now);
}
for(int i=;i<g[now].size();i++)
{
dfs(g[now][i]);
sz[now]+=sz[g[now][i]];
}
} void dfs1(int now)
{
vis[now]=;
for(int i=;i<e[now].size();i++)
{
f[e[now][i]]++;
if(!vis[e[now][i]])
{
dfs1(e[now][i]);
}
}
} void dfs3(int now)
{
vis[now]=;
if(f[now]) lcp+=t[now].mx*(1ll*sz[now]*(sz[now]-)/);
for(int i=;i<;i++)
{
if(f[t[now].son[i]]&&sz[t[now].son[i]]>&&(!vis[t[now].son[i]]))
{
dfs3(t[now].son[i]);
}
}
} void solve()
{
for(int i=;i<=cnt;i++) g[t[i].fa].push_back(i);
dfs();
sz[]=;
memset(vis,,sizeof(vis));
dfs1(last);
memset(vis,,sizeof(vis));
dfs3();
long long len=1ll*n*(n-)*(n+)/;
printf("%lld\n",len-*lcp);
} }sam; char s[]; int main()
{
scanf("%s",s);
n=strlen(s);
for(int i=;i<n;i++)
{
sam.add(s[i]-'a');
}
sam.solve();
}
洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)的更多相关文章
- [洛谷P4248][AHOI2013]差异
题目大意:给一个长度为$n$的字符串,求: $$\sum\limits_{1\leqslant i<j\leqslant n}|suf_i|+|suf_j|-2\times lcp(suf_i, ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- [AHOI2013]差异 后缀自动机_Parent树
题中要求: $\sum_{1\leqslant i < j \leq n } Len(T_{i}) +Len(T_{j})-2LCP(T_{i},T_{j})$ 公式左边的部分很好求,是一个常量 ...
- [Ahoi2013]差异(后缀自动机)
/* 前面的那一坨是可以O1计算的 后面那个显然后缀数组单调栈比较好写??? 两个后缀的lcp长度相当于他们在后缀树上的lca的深度 那么我们就能够反向用后缀自动机构造出后缀树然后统计每个点作为lca ...
- [bzoj3238][Ahoi2013]差异——后缀自动机
Brief Description Algorithm Design 下面给出后缀自动机的一个性质: 两个子串的最长公共后缀,位于这两个串对应的状态在parent树上的lca状态上.并且最长公共后缀的 ...
- BZOJ 3238 [Ahoi2013]差异 ——后缀自动机
后缀自动机的parent树就是反串的后缀树. 所以只需要反向构建出后缀树,就可以乱搞了. #include <cstdio> #include <cstring> #inclu ...
- 洛谷4248 AHOI2013差异 (后缀数组SA+单调栈)
补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); ...
- BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)
题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...
- BZOJ3238: [Ahoi2013]差异(后缀自动机)
题意 题目链接 Sol 前面的可以直接算 然后原串翻转过来,这时候变成了求任意两个前缀的最长公共后缀,显然这个值应该是\(len[lca]\),求出\(siz\)乱搞一下 #include<bi ...
随机推荐
- PAT L3-004 肿瘤诊断(三维广搜)
在诊断肿瘤疾病时,计算肿瘤体积是很重要的一环.给定病灶扫描切片中标注出的疑似肿瘤区域,请你计算肿瘤的体积. 输入格式: 输入第一行给出4个正整数:M.N.L.T,其中M和N是每张切片的尺寸(即每张切片 ...
- php下ajax的文件切割上传
html5中的File对象继承Blob二进制对象,Blob提供了一个slice函数,可以用来切割文件数据. <!DOCTYPE HTML> <html lang="zh-C ...
- IIS 设置404页面 显示系统找不到指定的文件
1.原因就是IIS的普通用户没有访问404页面的权限,造成了自定义404页面无法显示.只需要将user用户组具有读的权限即可.
- JavaScript跨域总结与解决办法(转)
什么是跨域 1.document.domain+iframe的设置 2.动态创建script 3.利用iframe和location.hash 4.window.name实现的跨域数据传输 5.使用H ...
- Underscore模版引擎的使用-template方法
之前项目里有遇到在DOM中增加大量的html结构的时候,傻乎乎的在js中写一堆模版,然后用replace一个一个做替换.当时就是难看了点,不觉得啥,现在了解了模版引擎之后回头来看真的比较捉急了,以后是 ...
- LaTeX 公式(转自)Iowa_Battleship 神犇
传送门 (我这个蒟蒻只是mark一下 这个LaTex公式很全!!我是照着打数学公式的!! orz大佬Iowa
- code4906 删数问题
题目: 键盘输入一个高精度的正整数n(<=240位), 去掉任意s个数字后剩下的数字按原左右次序将组成一个新的正整数. 编程对给定的n和s,寻找一种方案,使得剩下的数最小. Simple Inp ...
- Spring.NET学习笔记8——集合类型的注入(基础篇)
1.基础类 public class Happy { public override string ToString() { return &q ...
- CocoStudio
不知道从哪里下载的CocoStudio_Full_V1.0.0.1.1185392965.exe 安装后点击"Animation Editor"."UI Editor&q ...
- An integration of deep learning and neuroscience
Recently, I have read a paper about the integration of deep learing and neuroscience, which elaborat ...