大数据技术之_19_Spark学习_01_Spark 基础解析小结(无图片)
1、准备安装包
2、Spark Standalone 即独立模式
2.1、解压安装包到你安装的目录。
2.2、拷贝 conf 目录下的 slaves 文件,将 slave 节点的 hostname 写在文件中,每行一个。
2.3、拷贝 conf 目录下的 spark-env.sh 文件,将 SPARK_MASTER_HOST 和 SPARK_MASTER_PORT 指定。
2.4、分发你的 spark 安装目录到其他节点。
2.5、在 master 节点上执行 /opt/module/spark-2.1.1-bin-hadoop2.7/sbin/start-all.sh 来启动整个 spark 集群。
2.6、在浏览器中访问 http://hadoop102:8080 来访问你的 spark 集群
注意
:如果在启动的时候出现 JAVA_HOME not set
那么可以在 sbin 目录下的 spark-config.sh 文件中输入 export JAVA_HOME=/opt/module/jdk1.8.0_144 然后分发到其他节点,这样问题即可解决。
3、Spark Standalone 模式 Spark History Server 的配置
3.1、拷贝 conf 目录下的 spark-defaults.conf 修改为 spark-env.sh,在该文件中添加以下内容:
spark-defaults.conf
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop102:9000/directory
spark.eventLog.compress true
3.2、拷贝 conf 目录下的 spark-env.sh.template 修改为 spark-env.sh,在该文件中添加以下内容:
spark-env.sh
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=4000
-Dspark.history.retainedApplications=3
-Dspark.history.fs.logDirectory=hdfs://hadoop102:9000/directory"
3.3、将修改好的文件同步到集群的其他节点
3.4、启动 /opt/module/spark-2.1.1-bin-hadoop2.7/sbin/start-history-server.sh 来启动 history log 的 web 服务。
查看日志有两种方式:
1、对于正在运行的应用,直接访问 http://hadoop102:4040 查看
2、对于已经结束的应用,直接访问 http://hadoop102:4000 查看
4、Spark Standalone 的 HA 模式
4.1、修改 spark-env.sh 文件
1)、删除 SPARK_MASTER_IP(即 SPARK_MASTER_HOST)
2)、添加如下内容:
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=hadoop102:2181,hadoop103:2181,hadoop104:2181
-Dspark.deploy.zookeeper.dir=/spark"
3)、将配置好的文件分发到其他机器节点
4.2、在 master 节点通过 sbin/start-all.sh 进行集群的启动,在某个其他 slave 节点上手动执行 sbin/start-master.sh 来启动第二个 master 进程
4.3、如果是 HA 模式,那么访问的服务地址变为:--master spark://hadoop102:7077,hadoop103:7077
5、Spark Yarn 模式集群的配置
5.1、不需要 spark standalone 集群
5.2、需要配置你提交应用的 client 端
修改 spark-env.sh
# 让 spark 能够发现 hadoop 的配置文件
HADOOP_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop
YARN_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop
5.3、提交应用
$ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class com.atguigu.sparkdemo.WordCountDemo \
--master yarn \
--deploy-mode client \
--executor-memory 1G \
--total-executor-cores 2 \
/opt/software/sparkdemo-1.0-SNAPSHOT-jar-with-dependencies.jar \
hdfs://hadoop102:9000/RELEASE \
hdfs://hadoop102:9000/out
或者
$ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class com.atguigu.sparkdemo.WordCountDemo \
--master yarn-client \
--executor-memory 1G \
--total-executor-cores 2 \
/opt/software/sparkdemo-1.0-SNAPSHOT-jar-with-dependencies.jar \
hdfs://hadoop102:9000/RELEASE \
hdfs://hadoop102:9000/out
注意
:如果使用 yarn 集群,不需要配置 master、slave 结构,只需要配置 jar 包的 client 提交端,让提交端能够发现 hadoop 的一些配置即可。
6、Spark 集群的访问
6.1、通过 IDEA 来编写程序打成 jar 包,来提交运行。
1)、需要创建 SparkConf 对象来设置应用
2)、需要根据 SparkConf 对象来创建 SparkContext(SparkConext 是你的程序和 spark 集群进行连接的桥梁)。
3)、通过 sc,从外部加载数据
4)、对数据进行处理
5)、将结果数据写出到外部
6)、通过 sc.stop() 关闭 SparkContext
6.2、调试应用是通过 local[*] 模式来进行的。
6.3、应用的提交:
$ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class com.atguigu.sparkdemo.WordCountDemo \
--master spark://hadoop102:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/opt/software/sparkdemo-1.0-SNAPSHOT-jar-with-dependencies.jar \
hdfs://hadoop102:9000/RELEASE \
hdfs://hadoop102:9000/out
--class 指定 jar 包的主类
--master 指定 jar 包提交的模式,详解如下:
local 本地模式,本地运行,可以调试(local 1个线程、local[*] 不限线程、local[N] N个线程,理想情况下,N 设置为你机器的 CPU 核数)
spark 提交到 spark stanalone 集群,有 Master 和 Worker 进程,会在 container 中 jar 包运行的时候自动生成
mesos 将 jar 包提交到 mesos 集群,运行在 mesos 资源管理器框架之上,由 mesos 负责资源管理,Spark 负责任务调度和计算
yarn 将 jar 包提交到 yarn 集群,运行在 yarn 资源管理器框架之上,由 yarn 负责资源管理,Spark 负责任务调度和计算
cloud 比如 AWS 的 EC2,使用这个模式能很方便的访问 Amazon 的 S3,Spark 支持多种分布式存储系统,比如 HDFS 和 S3
--deploy-mode 指定 jar 的运行方式(默认是 client 模式),详解如下:
client 模式 在提交端生成的 JVM 会一直等待所有计算过程全部完成才退出,它有两个功能,一个是提交,一个是监控 jar 包运行(测试环境下使用)
cluster 模式 在提交端生成的 JVM 在提交 jar 包后会退出,它只有一个提交功能,然后在某一个 worker 上会生成一个 Driver 的 JVM,该 JVM 执行监控 jar 包运行的功能,等待所有代码运行完毕退出(生产环境下使用 )
application.jar 指定你的 jar 包的地址
arguments 传给 main() 方法的参数
执行通过 $ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-shell 来运行。
如果不设置 master 那么默认运行在本机节点;如果设置 --master spark://hadoop102:7077 那么运行在 Spark Standalone 模式集群。
7、问题
1、看文档的时候,需要将某些配置改成自己的。
2、IDEA 运行程序的时候,winuntil.exe 需要添加 HADOOP_HOME 环境变量(IDEA 需要重启)。
3、访问 HDFS 的时候权限问题,比如:HADOOP_USER_NAME=hadoop,运行程序的时候就会以 hadoop 用户来运行。参考链接:https://www.cnblogs.com/chenmingjun/p/10746853.html
大数据技术之_19_Spark学习_01_Spark 基础解析小结(无图片)的更多相关文章
- 大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序
第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2 ...
- 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析 + Spark Streaming 概述、运行、解析 + DStream 的输入、转换、输出 + 优化
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 S ...
- 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...
- 大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述、解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank 实例
第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式 ...
- 大数据技术之_19_Spark学习_02_Spark Core 应用解析小结
1.RDD 全称 弹性分布式数据集 Resilient Distributed Dataset它就是一个 class. abstract class RDD[T: ClassTag]( @tra ...
- 大数据技术之_19_Spark学习_03_Spark SQL 应用解析小结
========== Spark SQL ==========1.Spark SQL 是 Spark 的一个模块,可以和 RDD 进行混合编程.支持标准的数据源.可以集成和替代 Hive.可以提供 J ...
- 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析小结
========== Spark Streaming 是什么 ==========1.SPark Streaming 是 Spark 中一个组件,基于 Spark Core 进行构建,用于对流式进行处 ...
- 大数据技术之_16_Scala学习_04_函数式编程-基础+面向对象编程-基础
第五章 函数式编程-基础5.1 函数式编程内容说明5.1.1 函数式编程内容5.1.2 函数式编程授课顺序5.2 函数式编程介绍5.2.1 几个概念的说明5.2.2 方法.函数.函数式编程和面向对象编 ...
- 大数据技术之_16_Scala学习_01_Scala 语言概述
第一章 Scala 语言概述1.1 why is Scala 语言?1.2 Scala 语言诞生小故事1.3 Scala 和 Java 以及 jvm 的关系分析图1.4 Scala 语言的特点1.5 ...
随机推荐
- 微信分享 apicloud方式 中遇到的坎
1 appid填错了. 2 图片地址没写对,可能因为拼写问题,图片不存在 3 图片大小有限制.不能太大.
- Activiti中23张表的含义
1.与流程定义相关的4张表: 2.与执行任务相关的5张表: 3.与流程变量相关的2张表
- 2018.08.14 bzoj4241: 历史研究(回滚莫队)
传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...
- MVC各层应该要实现的代码
1.C 在设计良好的应用中,控制器很精练,包含的操作代码简短: 如果你的控制器很复杂,通常意味着需要重构,转移一些代码到其他类中. 归纳起来,控制器 可访问 请求 数据; 可根据请求数据调用 模型 的 ...
- hdu-1130(卡特兰数+大数乘法,除法模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1130 卡特兰数:https://blog.csdn.net/qq_33266889/article/d ...
- Matlab 中以分数显示结果
转http://www.blogbus.com/shijuanfeng-logs/234881647.html Matlab,计算得到的结果一般是小数形式. 但为了更精确表示,我们有时候需要用到分数形 ...
- 编写属于自己的linux命令
开篇: 问题和解决思路 在使用一些基础IDE时,工具经常会在我们建立特定文件时给我们一个已经有了一些特定代码的模板文件,但是在linux开发时,没有这样的IDE,怎么办?虽然代码量不是很多,但是能一次 ...
- 对比手机SLAM和机器人SLAM
陀螺仪?? IMU?? 加速度器与?? 人与机器 惯性定位与?? 步骤上对比Project Tango与SLAM
- 75. Sort Colors(颜色排序) from LeetCode
75. Sort Colors 给定一个具有红色,白色或蓝色的n个对象的数组,将它们就地 排序,使相同颜色的对象相邻,颜色顺序为红色,白色和蓝色. 这里,我们将使用整数0,1和2分别表示红色, ...
- 20155225 2016-2017-2 《Java程序设计》第九周学习总结
20155225 2016-2017-2 <Java程序设计>第九周学习总结 教材学习内容总结 JDBC入门 了解JDBC架构 使用JDBC API JDBC是用于执行SQL的解决方案,开 ...