大数据技术之_19_Spark学习_01_Spark 基础解析小结(无图片)
1、准备安装包
2、Spark Standalone 即独立模式
2.1、解压安装包到你安装的目录。
2.2、拷贝 conf 目录下的 slaves 文件,将 slave 节点的 hostname 写在文件中,每行一个。
2.3、拷贝 conf 目录下的 spark-env.sh 文件,将 SPARK_MASTER_HOST 和 SPARK_MASTER_PORT 指定。
2.4、分发你的 spark 安装目录到其他节点。
2.5、在 master 节点上执行 /opt/module/spark-2.1.1-bin-hadoop2.7/sbin/start-all.sh 来启动整个 spark 集群。
2.6、在浏览器中访问 http://hadoop102:8080 来访问你的 spark 集群
注意:如果在启动的时候出现 JAVA_HOME not set 那么可以在 sbin 目录下的 spark-config.sh 文件中输入 export JAVA_HOME=/opt/module/jdk1.8.0_144 然后分发到其他节点,这样问题即可解决。
3、Spark Standalone 模式 Spark History Server 的配置
3.1、拷贝 conf 目录下的 spark-defaults.conf 修改为 spark-env.sh,在该文件中添加以下内容:
spark-defaults.conf
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop102:9000/directory
spark.eventLog.compress true
3.2、拷贝 conf 目录下的 spark-env.sh.template 修改为 spark-env.sh,在该文件中添加以下内容:
spark-env.sh
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=4000
-Dspark.history.retainedApplications=3
-Dspark.history.fs.logDirectory=hdfs://hadoop102:9000/directory"
3.3、将修改好的文件同步到集群的其他节点
3.4、启动 /opt/module/spark-2.1.1-bin-hadoop2.7/sbin/start-history-server.sh 来启动 history log 的 web 服务。
查看日志有两种方式:
1、对于正在运行的应用,直接访问 http://hadoop102:4040 查看
2、对于已经结束的应用,直接访问 http://hadoop102:4000 查看
4、Spark Standalone 的 HA 模式
4.1、修改 spark-env.sh 文件
1)、删除 SPARK_MASTER_IP(即 SPARK_MASTER_HOST)
2)、添加如下内容:
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=hadoop102:2181,hadoop103:2181,hadoop104:2181
-Dspark.deploy.zookeeper.dir=/spark"
3)、将配置好的文件分发到其他机器节点
4.2、在 master 节点通过 sbin/start-all.sh 进行集群的启动,在某个其他 slave 节点上手动执行 sbin/start-master.sh 来启动第二个 master 进程
4.3、如果是 HA 模式,那么访问的服务地址变为:--master spark://hadoop102:7077,hadoop103:7077
5、Spark Yarn 模式集群的配置
5.1、不需要 spark standalone 集群
5.2、需要配置你提交应用的 client 端
修改 spark-env.sh
# 让 spark 能够发现 hadoop 的配置文件
HADOOP_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop
YARN_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop
5.3、提交应用
$ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class com.atguigu.sparkdemo.WordCountDemo \
--master yarn \
--deploy-mode client \
--executor-memory 1G \
--total-executor-cores 2 \
/opt/software/sparkdemo-1.0-SNAPSHOT-jar-with-dependencies.jar \
hdfs://hadoop102:9000/RELEASE \
hdfs://hadoop102:9000/out
或者
$ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class com.atguigu.sparkdemo.WordCountDemo \
--master yarn-client \
--executor-memory 1G \
--total-executor-cores 2 \
/opt/software/sparkdemo-1.0-SNAPSHOT-jar-with-dependencies.jar \
hdfs://hadoop102:9000/RELEASE \
hdfs://hadoop102:9000/out
注意:如果使用 yarn 集群,不需要配置 master、slave 结构,只需要配置 jar 包的 client 提交端,让提交端能够发现 hadoop 的一些配置即可。
6、Spark 集群的访问
6.1、通过 IDEA 来编写程序打成 jar 包,来提交运行。
1)、需要创建 SparkConf 对象来设置应用
2)、需要根据 SparkConf 对象来创建 SparkContext(SparkConext 是你的程序和 spark 集群进行连接的桥梁)。
3)、通过 sc,从外部加载数据
4)、对数据进行处理
5)、将结果数据写出到外部
6)、通过 sc.stop() 关闭 SparkContext
6.2、调试应用是通过 local[*] 模式来进行的。
6.3、应用的提交:
$ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class com.atguigu.sparkdemo.WordCountDemo \
--master spark://hadoop102:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/opt/software/sparkdemo-1.0-SNAPSHOT-jar-with-dependencies.jar \
hdfs://hadoop102:9000/RELEASE \
hdfs://hadoop102:9000/out
--class 指定 jar 包的主类
--master 指定 jar 包提交的模式,详解如下:
local 本地模式,本地运行,可以调试(local 1个线程、local[*] 不限线程、local[N] N个线程,理想情况下,N 设置为你机器的 CPU 核数)
spark 提交到 spark stanalone 集群,有 Master 和 Worker 进程,会在 container 中 jar 包运行的时候自动生成
mesos 将 jar 包提交到 mesos 集群,运行在 mesos 资源管理器框架之上,由 mesos 负责资源管理,Spark 负责任务调度和计算
yarn 将 jar 包提交到 yarn 集群,运行在 yarn 资源管理器框架之上,由 yarn 负责资源管理,Spark 负责任务调度和计算
cloud 比如 AWS 的 EC2,使用这个模式能很方便的访问 Amazon 的 S3,Spark 支持多种分布式存储系统,比如 HDFS 和 S3
--deploy-mode 指定 jar 的运行方式(默认是 client 模式),详解如下:
client 模式 在提交端生成的 JVM 会一直等待所有计算过程全部完成才退出,它有两个功能,一个是提交,一个是监控 jar 包运行(测试环境下使用)
cluster 模式 在提交端生成的 JVM 在提交 jar 包后会退出,它只有一个提交功能,然后在某一个 worker 上会生成一个 Driver 的 JVM,该 JVM 执行监控 jar 包运行的功能,等待所有代码运行完毕退出(生产环境下使用 )
application.jar 指定你的 jar 包的地址
arguments 传给 main() 方法的参数
执行通过 $ /opt/module/spark-2.1.1-bin-hadoop2.7/bin/spark-shell 来运行。
如果不设置 master 那么默认运行在本机节点;如果设置 --master spark://hadoop102:7077 那么运行在 Spark Standalone 模式集群。
7、问题
1、看文档的时候,需要将某些配置改成自己的。
2、IDEA 运行程序的时候,winuntil.exe 需要添加 HADOOP_HOME 环境变量(IDEA 需要重启)。
3、访问 HDFS 的时候权限问题,比如:HADOOP_USER_NAME=hadoop,运行程序的时候就会以 hadoop 用户来运行。参考链接:https://www.cnblogs.com/chenmingjun/p/10746853.html
大数据技术之_19_Spark学习_01_Spark 基础解析小结(无图片)的更多相关文章
- 大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序
第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2 ...
- 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析 + Spark Streaming 概述、运行、解析 + DStream 的输入、转换、输出 + 优化
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 S ...
- 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...
- 大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述、解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank 实例
第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式 ...
- 大数据技术之_19_Spark学习_02_Spark Core 应用解析小结
1.RDD 全称 弹性分布式数据集 Resilient Distributed Dataset它就是一个 class. abstract class RDD[T: ClassTag]( @tra ...
- 大数据技术之_19_Spark学习_03_Spark SQL 应用解析小结
========== Spark SQL ==========1.Spark SQL 是 Spark 的一个模块,可以和 RDD 进行混合编程.支持标准的数据源.可以集成和替代 Hive.可以提供 J ...
- 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析小结
========== Spark Streaming 是什么 ==========1.SPark Streaming 是 Spark 中一个组件,基于 Spark Core 进行构建,用于对流式进行处 ...
- 大数据技术之_16_Scala学习_04_函数式编程-基础+面向对象编程-基础
第五章 函数式编程-基础5.1 函数式编程内容说明5.1.1 函数式编程内容5.1.2 函数式编程授课顺序5.2 函数式编程介绍5.2.1 几个概念的说明5.2.2 方法.函数.函数式编程和面向对象编 ...
- 大数据技术之_16_Scala学习_01_Scala 语言概述
第一章 Scala 语言概述1.1 why is Scala 语言?1.2 Scala 语言诞生小故事1.3 Scala 和 Java 以及 jvm 的关系分析图1.4 Scala 语言的特点1.5 ...
随机推荐
- [Selenium]显式等待 Explicit wait & 隐式等待 Implicit wait
显式等待 Explicit wait 显示等待 , 就是明确的要等到某个元素出现或者某个元素满足某种条件,每隔一段时间检查一次,等不到,就一直等,如果在规定的时间内还没有找到,就跳出来检查间隔的时间和 ...
- jquery 元素筛选 13.6.20
<ul> <li>list item 1</li> <li>list item 2</li> <li class="thir ...
- circos 绘制关系型图ribbon,并加入透明度
luminance = lum80<<include colors_fonts_patterns.conf>><colors># r,g,b,a color def ...
- 关于document.write(来自网络)
对象属性: document.title //设置文档标题等价于HTML的<title>标签document.bgColor / ...
- 更新vs2017 15.9.2后,在指定-T v141_xp情况下载编译会报下面warning MSB8051
更新vs2017 15.9.2后,在指定-T v141_xp情况下载编译会报下面warning: C:\Program Files (x86)\Microsoft Visual Studio\2017 ...
- 2018.09.02 bzoj1003: [ZJOI2006]物流运输(dp+最短路转移)
传送门 dp好题. 每一天要变更路线一定还是走最短路. 所以l~r天不变更路线的最优方案就是把l~r天所有不能走的点都删掉再求最短路.显然是可以dp的. 设f[i]表示第i天的最优花销.那么我们枚举在 ...
- qq强制聊天工具
当你想和别人聊天, 别人有不理你的时候可以用上哦!!!特别是情人吵架的时候, 呵呵 复制下面的代码: @echo off title DIY-QQ强制聊天工具color 0a echo. echo. ...
- (转) MVC 中 @help 用法
ASP.NET MVC 3支持一项名为“Razor”的新视图引擎选项(除了继续支持/加强现有的.aspx视图引擎外).当编写一个视图模板时,Razor将所需的字符和击键数减少到最小,并保证一个快速.通 ...
- QGIS+GH + MapServer
拒绝描图,如何利用GH+QGIS完爆场地底图?http://www.sohu.com/a/251004986_657084 拒绝描图--爬取OSM数据绘制底图 所用软件 RHINO+GH\QGIS\G ...
- HDU6027 Easy Summation 2017-05-07 19:02 23人阅读 评论(0) 收藏
Easy Summation Time Limit: 2000/1000 MS ...