4318: OSU!

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 1473  Solved: 1174
[Submit][Status][Discuss]

Description

osu 是一款群众喜闻乐见的休闲软件。 
我们可以把osu的规则简化与改编成以下的样子: 
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 
 
 

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 
 
 

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。 
 

Sample Input

3
0.5
0.5
0.5

Sample Output

6.0

HINT

【样例说明】 
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0 
N<=100000

Solution

期望DP,稍微推一下式子就行了(像我这样期望废的都能想出来!!)

设当前最长后缀1的长度为$x+1$,期望得分由上一位长度为$x$转移过来,增加的值有$3x^2+3x+1$,所以维护$x^2$和$x$的期望值就可以了。

Code

#include<bits/stdc++.h>
using namespace std; double x[], x2[], dp[], a[]; int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i ++) scanf("%lf", &a[i]);
for(int i = ; i <= n; i ++) {
x[i] = (x[i-] + ) * a[i];
x2[i] = (x2[i-] + * x[i-] + ) * a[i];
dp[i] = dp[i-] + ( * x2[i-] + * x[i-] + ) * a[i];
}
printf("%0.1lf", dp[n]);
return ;
}

【BZOJ】4318: OSU!【期望DP】的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  4. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  5. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  6. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  7. BZOJ 4318 OSU! (概率DP)

    题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...

  8. ●BZOJ 4318 OSU!

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...

  9. 【BZOJ4318】OSU! 期望DP

    [BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...

  10. bzoj 4318 OSU!

    期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...

随机推荐

  1. qt 零星笔记

    1.qt中堆栈对象的销毁 名字不对,我不知道该取个什么名字,暂且这样吧 在linux c编程中谈到过进程的内存映像,一个进程在内存中的映像如下

  2. Wood Cut

    Given n pieces of wood with length L[i] (integer array). Cut them into small pieces to guarantee you ...

  3. 关于oracle数据库死锁的检查方法

    一.数据库死锁的现象程序在执行的过程中,点击确定或保存按钮,程序没有响应,也没有出现报错. 二.死锁的原理当对于数据库某个表的某一列做更新或删除等操作,执行完毕后该条语句不提交,另一条对于这一列数据做 ...

  4. 14 Go's Declaration Syntax go语言声明语法

    Go's Declaration Syntax go语言声明语法 7 July 2010 Introduction Newcomers to Go wonder why the declaration ...

  5. java基础75 xpth技术(网页知识)

    1.xpth技术 1.1.xpath的作用 主要用于快速获取所需的节点对象. list<Node> selectNodes("xpath");  查询多个节点对象    ...

  6. Java 容器的打印

    Java容器类库中的两种主要类型,它们的区别在于容器中每个"槽"保存的元素个数 Clollection容器只能在保存一个元素,此类容器包括: List,它以特定顺序保存一组元素 S ...

  7. python包安装-centos7/windows

    1.修改pip源 临时使用: 可以在使用pip的时候在后面加上-i参数,指定pip源 eg: pip install scrapy -i https://pypi.tuna.tsinghua.edu. ...

  8. [USACO18FEB]Snow Boots S

    提供一种无脑DP做法 题目中大概有这么些东西:位置,穿鞋,跑路 数据小,那么暴力开数组暴力DP吧 设dp[i][j]表示穿着鞋子j,到达位置i是否可行 无脑转移 枚举位置,正在穿哪双鞋,换成哪双走出去 ...

  9. vim 中替换命令

    vi/vim 中可以使用 :s 命令来替换字符串.以前只会使用一种格式来全文替换,今天发现该命令有很多种写法(vi 真是强大啊,还有很多需要学习),记录几种在此,方便以后查询. :s/vivian/s ...

  10. SQL语句添加删除修改字段[sql server 2000/2005]

    用SQL语句添加删除修改字段1.增加字段     alter table docdsp    add dspcodechar(200)2.删除字段     ALTER TABLE table_NAME ...