【BZOJ】4318: OSU!【期望DP】
4318: OSU!
Time Limit: 2 Sec Memory Limit: 128 MB
Submit: 1473 Solved: 1174
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
0.5
0.5
0.5
Sample Output
HINT
Solution
期望DP,稍微推一下式子就行了(像我这样期望废的都能想出来!!)
设当前最长后缀1的长度为$x+1$,期望得分由上一位长度为$x$转移过来,增加的值有$3x^2+3x+1$,所以维护$x^2$和$x$的期望值就可以了。
Code
#include<bits/stdc++.h>
using namespace std; double x[], x2[], dp[], a[]; int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i ++) scanf("%lf", &a[i]);
for(int i = ; i <= n; i ++) {
x[i] = (x[i-] + ) * a[i];
x2[i] = (x2[i-] + * x[i-] + ) * a[i];
dp[i] = dp[i-] + ( * x2[i-] + * x[i-] + ) * a[i];
}
printf("%0.1lf", dp[n]);
return ;
}
【BZOJ】4318: OSU!【期望DP】的更多相关文章
- BZOJ 4318: OSU! 期望DP
4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...
- bzoj 4318 OSU! —— 期望DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...
- BZOJ - 4318: OSU! (期望DP&Attention)
Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...
- BZOJ 4318 OSU! ——期望DP
这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...
- 【BZOJ】4318: OSU! 期望DP
[题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...
- BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP
这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...
- BZOJ 4318 OSU! (概率DP)
题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...
- ●BZOJ 4318 OSU!
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...
- 【BZOJ4318】OSU! 期望DP
[BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...
- bzoj 4318 OSU!
期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...
随机推荐
- 禅道CMS 获文件名脚本
use Net::HTTP::GET; use Base64; ; windowWidth=; windowHeight=; sid=jg9g2mk5kmru46lmd3g2evoc87>; # ...
- kworker内核工作队列详解
工作队列是另一种将工作推后执行的形式,它可以把工作交给一个内核线程去执行,这个下半部是在进程上下文中执行的,因此,它可以重新调度还有睡眠. 区分使用软中断/tasklet还是工作队列比较简单,如 ...
- j-linkV8固件更新(任意版本)
在使用j-link v8调试程序时,容易出现固件丢失或出错的情况,导致电脑不能识别,j-link上面的灯不亮.我今天刚刚遇到了这个情况,于是就拆开外壳,在网上搜索资料,发现刷固件相关的还真多,但是有一 ...
- FastDFS集群部署
之前介绍过关于FastDFS单机部署,详见博文:FastDFS+Nginx(单点部署)事例 下面来玩下FastDFS集群部署,实现高可用(HA) 服务器规划: 跟踪服务器1[主机](Tracker S ...
- Django中的QuerySet
一.QuerySet 查询集,类似一个列表,包含了满足查询条件的所有项.QuerySet 可以被构造,过滤,切片,做为参数传递,这些行为都不会对数据库进行操作.只有你查询的时候才真正的操作数据库.意味 ...
- python随笔(三)
在对字符串的操作中,s[::-1]表示将字符串逆序输出. 字符串本身不能改变(管理者而非所有者) 列表的内容是可以改变的,且列表的内容可以不仅仅是字符串.对于一个列表,注意b=a和b=a[:]的区别. ...
- linux 安装 Elasticsearch6.4.0详细步骤以及问题解决方案
1.jdk 安装 参考资料:https://www.cnblogs.com/shihaiming/p/5809553.html 2.elasticsearch 安装 下载:https://artifa ...
- ZOJ 3469 Food Delivery(区间DP好题)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4255 题目大意:在x轴上有n个客人,每个客人每分钟增加的愤怒值不同. ...
- Luogu P1160 【队列安排】
详细的链表讲解 很明显的一个链表裸题 和普通的链表有一个区别就是这个题 可以O(1)插入,O(1)查询 然后我们为了方便,采用双向链表,定义s.f作为指针数组 更详细的解释见代码 #include&l ...
- springMVC源码分析--HttpMessageConverter数据转化(一)
之前的博客我们已经介绍了很多springMVC相关的模块,接下来我们介绍一下springMVC在获取参数和返回结果值方面的处理.虽然在之前的博客老田已经分别介绍了参数处理器和返回值处理器: (1)sp ...