【BZOJ1041】[HAOI2008]圆上的整点
【BZOJ1041】[HAOI2008]圆上的整点
题面
题解
不妨设\(x>0,y>0\)
y^2=(x+r)(x-r)
\]
设\(r-x=ud,r+x=vd,(u,v)=1\)
\]
\(u,v\)一定为完全平方数
则\(u=s^2,v=t^2\)且必有\((s,t)=1\)
\Rightarrow\\
x=\frac{t^2-s^2}{2}d\\
y=dst\
\]
然后枚举\(2r\)的约数即可
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
ll R, ans;
int main () {
cin >> R;
for (ll i = 1; i * i <= 2 * R; i++) {
if (2 * R % i == 0) {
ll d = i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
if (i * i != R) {
d = 2 * R / i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
}
}
}
printf("%lld\n", (ans + 1) * 4);
return 0;
}
【BZOJ1041】[HAOI2008]圆上的整点的更多相关文章
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
- [BZOJ1041] [HAOI2008] 圆上的整点 (数学)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041 HAOI2008圆上的整点(数论)
求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...
- [bzoj1041][HAOI2008]圆上的整点
我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
随机推荐
- JavaScript运行机制的学习
今天在偶然在网上看到一个JavaScript的面试题,尝试着看了一下,很正常的就做错了,然后给我们前端做,哈哈,他居然也顺理成章做的错了,代码大概是这样的 /*1 下面代码会怎样执行?执行结果是什么* ...
- Linux chattr 命令详解
常见命令参数 A:即Atime,告诉系统不要修改对这个文件的最后访问时间. S:即Sync,一旦应用程序对这个文件执行了写操作,使系统立刻把修改的结果写到磁盘. a:即Append Only,系统只允 ...
- 【Excel】单元格的下拉框是怎么做的?
如果我们希望将产品这一列的每个单元格都能选择 左侧的产品就好了,就像这样 这里使用的是"验证数据有效性"功能 在这里: 点击F,选择F列后,打开“数据验证”,如图,选择序列,选择来 ...
- 函数的调用 and 打印返回值 ret= mai() print(ret)
def mai(): # mai 函数名 (yan) 形式参数 print("老板,给我一包中华") return"给你" # 返回值-- 给你ret = ma ...
- 第2次作业——APP案例分析
第一部分 调研, 评测 1.下载软件并使用起来,描述最简单直观的个人第一次上手体验. 知乎,中文互联网最大的知识平台.使用知乎这个APP3年了,目睹了它的兴盛(当然没有衰亡@_@).打开这款APP,主 ...
- JavaScript创建对象的6种方式
JavaScript创建对象简单的说,无非就是使用内置对象(Object)或各种自定义对象,当然还可以用JSON,但写法有很多种,也能混合使用. 1.对象字面量的方式 person = {name : ...
- java微信小程序解密AES/CBC/PKCS7Padding
摘要:微信小程序解密建议使用1.6及以上的环境使用maven下载jar包org.bouncycastlebcprov-jdk15on1.55加密类代码importorg.bouncycastle.jc ...
- Java虚拟机15:运行期优化
前言 HotSpot采用的是解释器+编译器并存的架构,之前的这篇文章里面已经讲过了,本文只是把即时编译器这块再讲得具体一点而已.当然,其实本文的内容也没多大意义,90%都是概念上的东西,对于实际开发. ...
- 【转】Android中获取应用程序(包)的信息-----PackageManager的使用(一)
转载请注明出处:http://blog.csdn.net/qinjuning 本节内容是如何获取Android系统中应用程序的信息,主要包括packagename.label.icon.占 ...
- POJ Football Game 【NIMK博弈 && Bash 博弈】
Football Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 451 Accepted: 178 Descr ...