【BZOJ1041】[HAOI2008]圆上的整点

题面

bzoj

洛谷

题解

不妨设\(x>0,y>0\)

\[x^2+y^2=r^2\\
y^2=(x+r)(x-r)
\]

设\(r-x=ud,r+x=vd,(u,v)=1\)

\[y^2=d^2uv
\]

\(u,v\)一定为完全平方数

则\(u=s^2,v=t^2\)且必有\((s,t)=1\)

\[2r=(u+v)d=(s^2+t^2)d\\
\Rightarrow\\
x=\frac{t^2-s^2}{2}d\\
y=dst\
\]

然后枚举\(2r\)的约数即可

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
ll R, ans;
int main () {
cin >> R;
for (ll i = 1; i * i <= 2 * R; i++) {
if (2 * R % i == 0) {
ll d = i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
if (i * i != R) {
d = 2 * R / i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
}
}
}
printf("%lld\n", (ans + 1) * 4);
return 0;
}

【BZOJ1041】[HAOI2008]圆上的整点的更多相关文章

  1. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  2. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

  3. [BZOJ1041] [HAOI2008] 圆上的整点 (数学)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  4. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  5. BZOJ1041 HAOI2008圆上的整点(数论)

    求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...

  6. [bzoj1041][HAOI2008]圆上的整点

    我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...

  7. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  8. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

随机推荐

  1. 委托学习总结(二)匿名方法和lambda表达式

    之前总结了委托这个困惑着大多初学者的概念,继续来学习匿名方法和lambda表达式 (1)我们之前写了这样一段代码 //自定义一个委托 public delegate int Expression(in ...

  2. iOS设计模式 - 命令

    iOS设计模式 - 命令 原理图 说明 命令对象封装了如何对目标执行指令的信息,因此客户端或调用者不必了解目标的任何细节,却仍可以对他执行任何已有的操作.通过把请求封装成对象,客户端可以把它参数化并置 ...

  3. zabbix日常监控项nginx(五)

    1.开启nginx监控 2.编写脚本来进行数据采集 3.设置用户自定义参数 4.重启zabbix-agent 5.添加item.创建图形.创建触发器 6.创建模板 注:第一次使用可以按需求制定好模板, ...

  4. September 08th 2017 Week 36th Friday

    Death is so terribly final, while life is full of possibilities. 死亡是冰冷可怕的绝境,而或者却充满了无限的可能. It isn't t ...

  5. CSS盒子模型之CSS3可伸缩框属性(Flexible Box)

    CSS盒子模型(下) 一.CSS3可伸缩框(Flexible Box) 可伸缩框属性(Flexible Box)是css3新添加的盒子模型属性,有人称之为弹性盒模型,它的出现打破了我们经常使用的浮动布 ...

  6. Spring中手动增加配置文件中占位符引用的变量

    在项目中遇到一个这样的需求,项目的配置文件由外部传入,这时spring配置文件那些占位符变量该如何取值呢? 解决这个问题的做法有几种,我想到的大概有以下三种: 1.通过系统属性来实现,把外部传入的配置 ...

  7. 【转】基于easyui开发Web版Activiti流程定制器详解(一)——目录结构

    题外话(可略过): 前一段时间(要是没记错的话应该是3个月以前)发布了一个更新版本,很多人说没有文档看着比较困难,所以打算拿点时间出来详细给大家讲解一下,由于本人平时要工作还要陪老婆和孩子而且还经营着 ...

  8. Python3中内置类型bytes和str用法及byte和string之间各种编码转换

    Python 3最重要的新特性大概要算是对文本和二进制数据作了更为清晰的区分.文本总是Unicode,由str类型表示,二进制数据则由bytes类型表示.Python 3不会以任意隐式的方式混用str ...

  9. 中间人攻击-MITM攻击

    中间人攻击(Man-in-the-MiddleAttack,简称“MITM攻击”)是一种“间接”的入侵攻击,这种攻击模式是通过各种技术手段将受入侵者控制的一台计算机虚拟放置在网络连接中的两台通信计算机 ...

  10. struts2 标签使用注意

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/qilixiang012/article/details/31954501 通常是用html标签.而不 ...