【BZOJ1041】[HAOI2008]圆上的整点

题面

bzoj

洛谷

题解

不妨设\(x>0,y>0\)

\[x^2+y^2=r^2\\
y^2=(x+r)(x-r)
\]

设\(r-x=ud,r+x=vd,(u,v)=1\)

\[y^2=d^2uv
\]

\(u,v\)一定为完全平方数

则\(u=s^2,v=t^2\)且必有\((s,t)=1\)

\[2r=(u+v)d=(s^2+t^2)d\\
\Rightarrow\\
x=\frac{t^2-s^2}{2}d\\
y=dst\
\]

然后枚举\(2r\)的约数即可

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
ll R, ans;
int main () {
cin >> R;
for (ll i = 1; i * i <= 2 * R; i++) {
if (2 * R % i == 0) {
ll d = i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
if (i * i != R) {
d = 2 * R / i;
for (ll s = 1; s * s <= 2 * R / d; s++) {
ll t = sqrt(2 * R / d - s * s);
if (s * s + t * t == 2 * R / d && __gcd(s, t) == 1) {
ll x = (t * t - s * s) / 2 * d, y = d * s * t;
if (x > 0 && y > 0 && x * x + y * y == R * R) ans += 2;
}
}
}
}
}
printf("%lld\n", (ans + 1) * 4);
return 0;
}

【BZOJ1041】[HAOI2008]圆上的整点的更多相关文章

  1. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  2. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

  3. [BZOJ1041] [HAOI2008] 圆上的整点 (数学)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  4. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  5. BZOJ1041 HAOI2008圆上的整点(数论)

    求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...

  6. [bzoj1041][HAOI2008]圆上的整点

    我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...

  7. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  8. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

随机推荐

  1. JavaScript运行机制的学习

    今天在偶然在网上看到一个JavaScript的面试题,尝试着看了一下,很正常的就做错了,然后给我们前端做,哈哈,他居然也顺理成章做的错了,代码大概是这样的 /*1 下面代码会怎样执行?执行结果是什么* ...

  2. Linux chattr 命令详解

    常见命令参数 A:即Atime,告诉系统不要修改对这个文件的最后访问时间. S:即Sync,一旦应用程序对这个文件执行了写操作,使系统立刻把修改的结果写到磁盘. a:即Append Only,系统只允 ...

  3. 【Excel】单元格的下拉框是怎么做的?

    如果我们希望将产品这一列的每个单元格都能选择 左侧的产品就好了,就像这样 这里使用的是"验证数据有效性"功能 在这里: 点击F,选择F列后,打开“数据验证”,如图,选择序列,选择来 ...

  4. 函数的调用 and 打印返回值 ret= mai() print(ret)

    def mai(): # mai 函数名 (yan) 形式参数 print("老板,给我一包中华") return"给你" # 返回值-- 给你ret = ma ...

  5. 第2次作业——APP案例分析

    第一部分 调研, 评测 1.下载软件并使用起来,描述最简单直观的个人第一次上手体验. 知乎,中文互联网最大的知识平台.使用知乎这个APP3年了,目睹了它的兴盛(当然没有衰亡@_@).打开这款APP,主 ...

  6. JavaScript创建对象的6种方式

    JavaScript创建对象简单的说,无非就是使用内置对象(Object)或各种自定义对象,当然还可以用JSON,但写法有很多种,也能混合使用. 1.对象字面量的方式 person = {name : ...

  7. java微信小程序解密AES/CBC/PKCS7Padding

    摘要:微信小程序解密建议使用1.6及以上的环境使用maven下载jar包org.bouncycastlebcprov-jdk15on1.55加密类代码importorg.bouncycastle.jc ...

  8. Java虚拟机15:运行期优化

    前言 HotSpot采用的是解释器+编译器并存的架构,之前的这篇文章里面已经讲过了,本文只是把即时编译器这块再讲得具体一点而已.当然,其实本文的内容也没多大意义,90%都是概念上的东西,对于实际开发. ...

  9. 【转】Android中获取应用程序(包)的信息-----PackageManager的使用(一)

    转载请注明出处:http://blog.csdn.net/qinjuning       本节内容是如何获取Android系统中应用程序的信息,主要包括packagename.label.icon.占 ...

  10. POJ Football Game 【NIMK博弈 && Bash 博弈】

    Football Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 451   Accepted: 178 Descr ...