每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和。

  设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数。

  枚举左右子树大小,则有f[n]=Σ{[f[i]+(g[i]+h[i]*i)·(n-i)]·h[n-i-1]+[f[n-i-1]+(g[n-i-1]+h[n-i-1]*(n-i-1))·(i+1)]·h[i]}·C(n-1,i),即对两棵子树分别统计贡献,C(n-1,i)即给左右子树分配编号。g[n]=Σ[(g[i]+h[i]*i)·h[n-i-1]+(g[n-i-1]+h[n-i-1]*(n-i-1))·h[i]]·C(n-1,i),h[n]=Σh[i]·h[n-i-1]·C(n-1,i),比较显然。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,P,C[N][N],f[N],g[N],h[N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5305.in","r",stdin);
freopen("bzoj5305.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),P=read();
C[][]=;
for (int i=;i<=n;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
f[]=g[]=;h[]=;
for (int i=;i<=n;i++)
{
for (int j=;j<i;j++)
inc(h[i],1ll*h[j]*h[i-j-]%P*C[i-][j]%P);
for (int j=;j<i;j++)
inc(g[i],((g[j]+1ll*j*h[j])%P*h[i-j-]+(g[i-j-]+1ll*(i-j-)*h[i-j-])%P*h[j])%P*C[i-][j]%P);
for (int j=;j<i;j++)
inc(f[i],((f[j]+(g[j]+1ll*j*h[j])%P*(i-j))%P*h[i-j-]+(f[i-j-]+(g[i-j-]+1ll*(i-j-)*h[i-j-])%P*(j+))%P*h[j])%P*C[i-][j]%P);
}
cout<<f[n];
return ;
}

BZOJ5305 HAOI2018苹果树(概率期望+动态规划)的更多相关文章

  1. 【题解】亚瑟王 HNOI 2015 BZOJ 4008 概率 期望 动态规划

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 一道不简单的概率和期望dp题 根据期望的线性性质,容易想到,可以算出每张卡的期望伤害, ...

  2. BZOJ5305: [HAOI2018]苹果树

    传送门 果然只有我这种菜鸡才会用这种菜鸡做法QwQ 对于一类要求期望的题目,有一个无脑的做法: 设概率为 \(f\),期望为 \(g\) 每次合并两个二元组 \(<f_1,g_1>,< ...

  3. [BZOJ5305][HAOI2018]苹果树(DP)

    首先注意到每种树都是等概率出现的,于是将问题转化成计数求和问题. f[n]表示所有n个点的树的两两点距离和的总和. g[n]表示所有n个点的树的所有点到根的距离和的总和. h[n]表示n个点的树的可能 ...

  4. [BZOJ5305][Haoi2018]苹果树 组合数

    题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一 ...

  5. [BZOJ5305][HAOI2018]苹果树 组合数学

    链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...

  6. [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数

    Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...

  7. BZOJ5305 [Haoi2018]苹果树 【组合数学】

    题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...

  8. BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)

    容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了.考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数.转 ...

  9. BZOJ4832 抵制克苏恩(概率期望+动态规划)

    注意到A+B+C很小,容易想到设f[i][A][B][C]为第i次攻击后有A个血量为1.B个血量为2.C个血量为3的期望伤害,倒推暴力转移即可. #include<iostream> #i ...

随机推荐

  1. Linux shell(4)

    test比较两个值: 测试比较两个值是linux中常用的比较运算,test命令可以进行对两个值的比较,如果比较成功则返回值为0,否则为非0 常用比较方法: ·1.整数比较 2.字符串比较 3.逻辑比较 ...

  2. 详解华为云基因容器服务GCS

    基因测序,作为“下一个能够改变世界”的技术,已经由实验室研究演变到临床使用,为人类预测罹患多种疾病的可能性,提前预防和治疗疾病提供了一套可靠的方法和手段.而基于基因测序在预防和治疗疾病方面的准确和可靠 ...

  3. PageHelper分页插件使用

    mybatis的分页插件jar包: 配置方法: 在mybatis配置文件中加下面代码 <plugin interceptor="com.github.pagehelper.PageIn ...

  4. elk6.3 centos集群搭建 head插件安装

    版本elk均为6.3+centos7.0 准备工作 官网下载elk6.3的linux环境的压缩包,sftp上传 下载对应的head插件sftp上传到指定目录 tar.gz文件解压 tar -zxvf ...

  5. Qt-网易云音乐界面实现-7 消息中心实现,主要是QListWidget 自定义Item 和QTabwidget使用

    最近写的有点烦躁, 感觉内容真的很多!很多!很多. 目前真的想知道网易官方在出这款产品是,用了多少人和多长时间. 今天写的这个消息中心,有点糙,只是原理实现了没有完全复制过来,心里有团火,不想写了. ...

  6. CentOS 下 SonarQube 6.7 的下载、配置、问题排查

    CentOS 下 SonarQube 6.7 的下载.配置.问题排查 系统: CentOS 7 x86_64 SonarQube 版本: 6.7.3 Java 版本: 1.8.0_171 MySQL ...

  7. linux_connect_mysql

    原文来自 https://www.cnblogs.com/lywy510/p/3615710.html #include <stdio.h> #include <stdlib.h&g ...

  8. 三种UIScrollView嵌套实现方案

    背景 随着产品功能不断的迭代,总会有需求希望在保证不影响其他区域功能的前提下,在某一区域实现根据选择器切换不同的内容显示. 苹果并不推荐嵌套滚动视图,如果直接添加的话,就会出现下图这种情况,手势的冲突 ...

  9. 脚本处理iOS的Crash日志

    背景 当我们打包app时,可以选择生成对应的符号表,其保存 16 进制函数地址映射信息,通过给定的函数起始地址和偏移量,可以对应函数具体信息以供分析. 所以我们拿到测试给的闪退日志(.crash)时, ...

  10. Linux 基础入门第一次实验笔记

    第一节.实验介绍 本节主要介绍 Linux 的历史,Linux 与 Windows 的区别等入门知识.如果你已经有过充分的了解,可以跳过本节,直接进入下一个实验. 一.Linux 为何物 Linux ...