BZOJ1053:反素数(数学)
对于任意的正整数\(x\),记其约数的个数为\(g(x)\)。现在定义反素数:对于\(0<i<x\),都有\(g(x)>g(i)\),那么就称x为反素数。
现在给定一个数N,满足\(1\leq N\leq 2*10^9\),求出不超过\(N\)的最大的反素数。
由反素数的定义我们知道,若\(x\)为反素数,那么\(x\)肯定是具有相同约数个数的数中最小的那一个;并且x的约数个数应该是最多的。
很明显直接枚举肯定要炸。观察到\(N\)不会超过\(2*10^9\),那么就可以知道:\(1\)~\(N\)中任何数质因子都不超过10个,并且所有质因子的指数总和不超过30。
然后。。反素数还有一个关键的性质,就是将它质因数分解过后,其指数是单调不增的。证明的话可以考虑交换两项的指数来考虑,对于一个\(p^{k_1}\),假设存在一个\(q^{k_2}\)并且满足\(p<q,k_1<k_2\),那么交换\(k1,k2\),会得到一个更小的且约数相同的数。
那么之后我们可以直接利用这些性质爆搜就好了。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 105;
ll n;
ll prime[N] = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
ll c[N];
ll qp(ll a, ll b) {
ll ans = 1 ;
while (b) {
if(b & 1)
ans = ans * a;
a = a * a;
b >>= 1;
}
return ans ;
}
ll ans, num;
void dfs(int k, int p, ll mul) {
if(k == 11) {
ll tmp = 1;
for(int i = 1; i <= 10; i++) {
tmp *= (c[i] + 1);
}
if(tmp > num) {
num = tmp;
ans = mul;
} else if(tmp == num && ans > mul) {
ans = mul;
}
return ;
}
ll cnt = 0;
for(; cnt <= p; cnt++) {
if(qp(prime[k], cnt)*mul > n) {
if(cnt > 0)
cnt--;
break ;
}
}
cnt = min(cnt , (ll)p);
for(int i = cnt; i >= 0; i--) {
c[k] = i;
dfs(k + 1, cnt, mul * qp(prime[k], i));
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
dfs(1, 31, 1);
cout << ans;
return 0;
}
BZOJ1053:反素数(数学)的更多相关文章
- BZOJ1053 反素数
题目大意 对于任何正整数x,其约数的个数记作g(x).如果某个正整数x满足对任意的0<i<x,都有g(x)>g(i) ,则称x为反质数.现在给定一个数N,求出不超过N的最大的反质数. ...
- 【BZOJ1053】 反素数ant
BZOJ1053 反素数ant 我们先考虑唯一分解定理求出约数个数: \(x=a_1^{p_1}a_2^{p_2}a_3^{p_3}...a_k^{p_k}\) 然后\(num=\Pi_{i=1}^k ...
- [BZOJ1053][SDOI2005]反素数ant 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1053 假设这个最大的反素数为$x$,那么$1<p<x$中数的因子数都没有$x$ ...
- 【bzoj1053】反素数
[bzoj1053]反素数 题意 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例 ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
- 【BZOJ1053】[HAOI2007]反素数(搜索)
[BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...
- 【BZOJ1053】[HAOI2007]反素数
[BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...
- 【BZOJ1053】[HAOI2007]反素数ant 暴力
[BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
随机推荐
- MyForm_参考django的Form组建
fork wupeiqi:https://github.com/fat39/Tyrion 组件说明:https://www.cnblogs.com/wupeiqi/p/5938916.html
- 我眼中的PD(产品狗)
以下内容可能引起您的不适(前方高能),请先移步科普: 产品经理为什么会存在? 本猿 -> web程序属 -> 前端开发种,从大森林迁徙到了小草原: 小草原物种稀缺,除了 程序猿,很难见到诸 ...
- Daily Scrum (2015/10/25)
今天终于到了周末的尾声,我们的组员也应该正常得投入到工作中了.这天晚上我(符美潇)和PM(潘礼鹏)和两个DEV开了一个小会,讨论一下我们本周的代码编写工作.我们了解到大家的代码阅读工作和相关知识的学习 ...
- 20135234mqy 实验四
北京电子科技学院(BESTI) 实 验 报 告 课程:java程序设计 班级:1352 姓名:mqy 学号:20135234 成绩: 指导教师:娄嘉鹏 ...
- iOS开发学习-NSUserDefaults的介绍和用法
NSUserDefaults类提供了一个与默认系统进行交互的编程接口.NSUserDefaults对象是用来保存,恢复应用程序相关的偏好设置,配置数据等等.默认系统允许应用程序自定义它的行为去迎合用户 ...
- POJ 1185 炮兵阵地 状压dp
题目链接: http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K 问题描述 司令部的将军们打算在N*M ...
- Codeforces Round #299 (Div. 2) D. Tavas and Malekas kmp
题目链接: http://codeforces.com/problemset/problem/535/D D. Tavas and Malekas time limit per test2 secon ...
- pktgen-dpdk 运行 run.py 报错 Config file 'default' not found 解决方法
pktgen 操作手册:http://pktgen-dpdk.readthedocs.io/en/latest/getting_started.html 执行到这一步时: $ cd <Pktge ...
- JPEG图像压缩算法流程详解
JPEG图像压缩算法流程详解 JPEG代表Joint Photographic Experts Group(联合图像专家小组).此团队创立于1986年,1992年发布了JPEG的标准而在1994年获得 ...
- 开发模式 MVC、MVP、MVVM和MVX框架模式
MVX框架模式的了解 MVX框架模式:MVC+MVP+MVVM 1.MVC: Model(模型)+View(视图)+controller(控制器),主要是基于分层的目的,让彼此的职责分开.View通过 ...