逻辑回归(Logistic Regression)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/
本文主要讲解分类问题中的逻辑回归。逻辑回归是一个二分类问题。
二分类问题
二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例如:我们要做一个垃圾邮件过滤系统,
是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件。对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件的例子中,正类就是正常邮件,负类就是垃圾邮件。
逻辑回归
Logistic函数
如果我们忽略二分类问题中y的取值是一个离散的取值(0或1),我们继续使用线性回归来预测y的取值。这样做会导致y的取值并不为0或1。逻辑回归使用一个函数来归一化y值,使y的取值在区间(0,1)内,这个函数称为Logistic函数(logistic function),也称为Sigmoid函数(sigmoid function)。函数公式如下:

Logistic函数当z趋近于无穷大时,g(z)趋近于1;当z趋近于无穷小时,g(z)趋近于0。Logistic函数的图形如下:

Logistic函数求导时有一个特性,这个特性将在下面的推导中用到,这个特性为:

逻辑回归表达式
逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0到1之间。线性回归模型的表达式带入g(z),就得到逻辑回归的表达式:

依照惯例,让
,表达式就转换为:

逻辑回归的软分类
现在我们将y的取值通过Logistic函数归一化到(0,1)间,y的取值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

对上面的表达式合并一下就是:

梯度上升
得到了逻辑回归的表达式,下一步跟线性回归类似,构建似然函数,然后最大似然估计,最终推导出θ的迭代更新表达式。这个思路不清楚的请参考文章《线性回归、梯度下降》,只不过这里用的不是梯度下降,而是梯度上升,因为这里是最大化似然函数不是最小化似然函数。
我们假设训练样本相互独立,那么似然函数表达式为:

同样对似然函数取log,转换为:

转换后的似然函数对θ求偏导,在这里我们以只有一个训练样本的情况为例:

这个求偏导过程第一步是对θ偏导的转化,依据偏导公式:y=lnx y'=1/x。
第二步是根据g(z)求导的特性g'(z) = g(z)(1 - g(z)) 。
第三步就是普通的变换。
这样我们就得到了梯度上升每次迭代的更新方向,那么θ的迭代表达式为:

这个表达式与LMS算法的表达式相比,看上去完全相同,但是梯度上升与LMS是两个不同的算法,因为表示的是关于
的一个非线性函数。
两个不同的算法,用同一个表达式表达,这并不仅仅是巧合,两者存在深层的联系。这个问题,我们将在广义线性模型GLM中解答。
逻辑回归(Logistic Regression)的更多相关文章
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- 机器学习(四)--------逻辑回归(Logistic Regression)
逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的 线性方程拟合的是连 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...
- 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...
- 机器学习 (三) 逻辑回归 Logistic Regression
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- ML 逻辑回归 Logistic Regression
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...
- 逻辑回归(Logistic Regression)详解,公式推导及代码实现
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...
- 逻辑回归 Logistic Regression
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...
- 【机器学习】Octave 实现逻辑回归 Logistic Regression
ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分 ...
随机推荐
- layer弹窗监控键盘事件
在开发中我们常常遇到客服各种其他问题,现在客服需要键盘按下关闭当前窗口事件和鼠标点击确定按钮事件一样. 我们需要在layer中编写一个监控事件.具体代码如下 layer.confirm('is not ...
- BZOJ3110: [Zjoi2013]K大数查询
喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...
- 30个要点帮你完成java代码优化
通过java代码规范来优化程序,优化内存使用情况,防止内存泄露 可供程序利用的资源(内存.CPU时间.网络带宽等)是有限的,优化的目的就是让程序用尽可能少的资源完成预定的任务.优化通常包含两方面的内容 ...
- TCP/IP——基本知识
TCP / IP通常被认为是一个四层协议系统: 1) 链路层,有时也称作数据链路层或网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡.它们一起处理与电缆(或其他任何传输媒介)的物 ...
- 初识Docker和Windows Server容器
概览 伴随着Windows Server 2016 Technical Preview 3 (TP3)版本的发布,微软首次提供了Windows平台下地原生容器.它集成了Docker对Windows S ...
- 深入理解javascript原型和闭包(7)——原型的灵活性
在Java和C#中,你可以简单的理解class是一个模子,对象就是被这个模子压出来的一批一批月饼(中秋节刚过完).压个啥样,就得是个啥样,不能随便动,动一动就坏了. 而在javascript中,就没有 ...
- [Fluent NHibernate]一对多关系处理
目录 写在前面 系列文章 一对多关系 总结 写在前面 上篇文章简单介绍了,Fluent Nhibernate使用代码的方式生成Nhibernate的配置文件,以及如何生成持久化类的映射文件.通过上篇的 ...
- 如何在ASP.NET MVC和EF中使用AngularJS
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) AngularJS作为一个越来越流行的前端框架,在使用ASP.NET MVC和实体框架开发W ...
- windows 10卸载自带软件
http://jingyan.baidu.com/article/14bd256e4ad268bb6c26126d.html http://jingyan.baidu.com/album/ae97a6 ...
- App-Pass the password
V1.0 初始版本 注册一个帐号却不想使用简单密码? Pass the Password! 输入任意字符串,如反写或截取网站域名,我们帮你生成高安全性密码. 记住规则,忘记密码 . 下一次依照你的规则 ...