转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/

本文主要讲解分类问题中的逻辑回归。逻辑回归是一个二分类问题

二分类问题

二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例如:我们要做一个垃圾邮件过滤系统,是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件。对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件的例子中,正类就是正常邮件,负类就是垃圾邮件。

逻辑回归

Logistic函数

如果我们忽略二分类问题中y的取值是一个离散的取值(0或1),我们继续使用线性回归来预测y的取值。这样做会导致y的取值并不为0或1。逻辑回归使用一个函数来归一化y值,使y的取值在区间(0,1)内,这个函数称为Logistic函数(logistic function),也称为Sigmoid函数(sigmoid function)。函数公式如下:

Logistic函数当z趋近于无穷大时,g(z)趋近于1;当z趋近于无穷小时,g(z)趋近于0。Logistic函数的图形如下:

Logistic函数求导时有一个特性,这个特性将在下面的推导中用到,这个特性为:

逻辑回归表达式

逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0到1之间。线性回归模型的表达式带入g(z),就得到逻辑回归的表达式:

依照惯例,让,表达式就转换为:

逻辑回归的软分类

现在我们将y的取值通过Logistic函数归一化到(0,1)间,y的取值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

对上面的表达式合并一下就是:

梯度上升

得到了逻辑回归的表达式,下一步跟线性回归类似,构建似然函数,然后最大似然估计,最终推导出θ的迭代更新表达式。这个思路不清楚的请参考文章《线性回归、梯度下降》,只不过这里用的不是梯度下降,而是梯度上升,因为这里是最大化似然函数不是最小化似然函数。

我们假设训练样本相互独立,那么似然函数表达式为:

同样对似然函数取log,转换为:

转换后的似然函数对θ求偏导,在这里我们以只有一个训练样本的情况为例:

这个求偏导过程第一步是对θ偏导的转化,依据偏导公式:y=lnx y'=1/x。

第二步是根据g(z)求导的特性g'(z) = g(z)(1 - g(z)) 。

第三步就是普通的变换。

这样我们就得到了梯度上升每次迭代的更新方向,那么θ的迭代表达式为:

这个表达式与LMS算法的表达式相比,看上去完全相同,但是梯度上升与LMS是两个不同的算法,因为表示的是关于的一个非线性函数。

两个不同的算法,用同一个表达式表达,这并不仅仅是巧合,两者存在深层的联系。这个问题,我们将在广义线性模型GLM中解答。

逻辑回归(Logistic Regression)的更多相关文章

  1. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  2. 机器学习(四)--------逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连 ...

  3. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  4. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  5. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  6. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  7. ML 逻辑回归 Logistic Regression

    逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...

  8. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...

  9. 逻辑回归 Logistic Regression

    逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...

  10. 【机器学习】Octave 实现逻辑回归 Logistic Regression

    ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分 ...

随机推荐

  1. iOS地图 -- 区域监听的实现和小练习

    区域监听用到的方法 [self.mgr startMonitoringForRegion:region]; --> 开启区域监听,没有返回值,在代理方法中得到信息并且处理信息 注:该方法只有用户 ...

  2. Java多线程卖票例子

    package com.test; public class SaleTickets implements Runnable { private int ticketCount = 10;// 总的票 ...

  3. Python 从零学起(纯基础) 笔记 之 深浅拷贝

    深浅拷贝 1. import  copy#浅拷贝copy.copy()#深拷贝copy.deepcopy()#赋值 = 2.   对于数字和字符串而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个 ...

  4. 下载imagenet2012数据集

    摸索了一下,imagenet2012下载,跟大家分享一下 用迅雷会员加速都可以下载,有的用百度云也可以离线下载 http://www.image-net.org/challenges/LSVRC/20 ...

  5. BUAA_OVERWATCH第一次行动前战略部署

    这太IMBA了! 需求调研问卷的反馈 #define A 调查问卷 A设计背景 随着各种新兴手游的兴起,以及各大直播间内Lying Man的火热,以及各种娱乐方式的发展,传统桌游很好地移植到app上的 ...

  6. TypeScript Function(函数)

    在JavaScript中,函数是构成任何应用程序的基础块.通过函数,你得以实现建立抽象层.模仿类.信息隐藏和模块化.在TypeScript中,虽然已经存在类和模块化,但是函数依旧在如何去"处 ...

  7. hibernate-cascade级联关系

    <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE hibernate-mapping PUBL ...

  8. Perplexity Vs Cross-entropy

    Evaluating a Language Model: Perplexity We have a serial of \(m\) sentences: \[s_1,s_2,\cdots,s_m\] ...

  9. <<< commons-fileupload 和 ajaxfileupload 实现局部上传

    最近弄了一个上传,要求实现页面的局部刷新,Java的上传组件大多还是用的 commons-fileupload,网上搜索了好多的教程,太麻烦了,看到了ajaxfileupload这个插件,不错,实现简 ...

  10. DataTable的过滤需要的数据

    DataView dv = datatable.DefaultView;           (1)      dv.RowFilter = "RowsId>3";  //此 ...