题目描述

如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。

输入输出格式

输入格式:

第一行包含四个正整数\(N、M、S、T\),分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来\(M\)行每行包含四个正整数\(u_i、v_i、w_i、f_i\),表示第i条有向边从\(u_i\)出发,到达\(v_i\),边权为\(w_i\)(即该边最大流量为\(w_i\)),单位流量的费用为\(f_i\)。

输出格式:

一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。

输入输出样例

输入样例#1:

4 5 4 3
4 2 30 2
4 3 20 3
2 3 20 1
2 1 30 9
1 3 40 5

输出样例#1:

50 280

说明

时空限制:\(1000ms,128M\)

(BYX:最后两个点改成了\(1200ms\))

数据规模:

对于\(30\%\)的数据:\(N<=10,M<=10\)

对于\(70\%\)的数据:\(N<=1000,M<=1000\)

对于\(100\%\)的数据:\(N<=5000,M<=50000\)

样例说明:

如图,最优方案如下:

第一条流为\(4-->3\),流量为\(20\),费用为\(3*20=60\)。

第二条流为\(4-->2-->3\),流量为\(20\),费用为\((2+1)*20=60\)。

第三条流为\(4-->2-->1-->3\),流量为\(10\),费用为\((2+9+5)*10=160\)。

故最大流量为\(50\),在此状况下最小费用为\(60+60+160=280\)。

故输出\(50\) \(280\)。

思路:费用流的模板题,就是在最大流中用,\(spfa\)或\(dijkstra\)等算法来代替,不同的是费用流在管流量的同时也要管边权,所以,可以说算是最大流的升级版吧,我目前还只会\(spfa\)版本的,\(dijkstra\)的还不太会写。

代码:

#include<cstdio>
#include<cstring>
#include<cctype>
#include<queue>
#define maxn 5007
using namespace std;
int num=1,n,m,head[maxn],pre[maxn],dis[maxn],vis[maxn],maxflow,ans,S,T;
const int inf=0x3f3f3f3f;
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int u,v,f,w,nxt;
}e[maxn*20];
inline void ct(int u, int v, int f, int w) {
e[++num]=node{u,v,f,w,head[u]};
head[u]=num;
}
inline bool bfs() {
memset(vis,0,sizeof(vis));
memset(dis,0x3f,sizeof(dis));
queue<int>q;
q.push(S),dis[S]=0;
while(!q.empty()) {
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v,f=e[i].f;
if(dis[v]>dis[u]+e[i].w&&f) {
dis[v]=dis[u]+e[i].w;
pre[v]=i;
if(!vis[v]) {
vis[v]=1;
q.push(v);
}
}
}
}
return dis[T]!=inf;
}
inline void work() {
int minn=inf;
for(int i=T;i!=S;i=e[pre[i]].u)
minn=min(minn,e[pre[i]].f);
for(int i=T;i!=S;i=e[pre[i]].u) {
e[pre[i]].f-=minn;
e[pre[i]^1].f+=minn;
ans+=minn*e[pre[i]].w;
}
maxflow+=minn;
}
int main() {
n=qread(),m=qread(),S=qread(),T=qread();
for(int i=1;i<=m;++i) {
int u=qread(),v=qread(),f=qread(),w=qread();
ct(u,v,f,w),ct(v,u,0,-w);
}
while(bfs()) work();
printf("%d %d\n",maxflow,ans);
return 0;
}

洛谷 P3381 【模板】最小费用最大流的更多相关文章

  1. 洛谷P3381 (最小费用最大流模板)

    记得把数组开大一点,不然就RE了... 1 #include<bits/stdc++.h> 2 using namespace std; 3 #define int long long 4 ...

  2. 洛谷.3381.[模板]最小费用最大流(zkw)

    题目链接 Update:我好像刚知道多路增广就是zkw费用流.. //1314ms 2.66MB 本题优化明显 #include <queue> #include <cstdio&g ...

  3. P3381 [模板] 最小费用最大流

    EK  + dijkstra (2246ms) 开氧气(586ms) dijkstra的势 可以处理负权 https://www.luogu.org/blog/28007/solution-p3381 ...

  4. 【洛谷 p3381】模板-最小费用最大流(图论)

    题目:给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 解法:在Dinic的基础下做spfa算法. 1 #include<cst ...

  5. 洛谷.4897.[模板]最小割树(Dinic)

    题目链接 最小割树模板.具体见:https://www.cnblogs.com/SovietPower/p/9734013.html. ISAP不知为啥T成0分了.. Dinic: //1566ms ...

  6. 网络流_spfa最小费用最大流

    最大流: 不断搜索增广路,寻找最小的容量-流量,得到最大流量,但最大流量在有花费时不一定是最小花费. 最小费用最大流 算法思想: 采用贪心的思想,每次找到一条从源点到达汇点的花费最小的路径,增加流量, ...

  7. 洛谷P3381 最小费用最大流模板

    https://www.luogu.org/problem/P3381 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用 ...

  8. 洛谷P3381 - 【模板】最小费用最大流

    原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...

  9. P3381 【模板】最小费用最大流

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...

  10. 经典网络流题目模板(P3376 + P2756 + P3381 : 最大流 + 二分图匹配 + 最小费用最大流)

    题目来源 P3376 [模板]网络最大流 P2756 飞行员配对方案问题 P3381 [模板]最小费用最大流 最大流 最大流问题是网络流的经典类型之一,用处广泛,个人认为网络流问题最具特点的操作就是建 ...

随机推荐

  1. jqueryeasyUI dialog 弹出窗口超出浏览器,导致不能关闭的bug解决方案

    jqueryeasyUI dialog 弹出窗口超出浏览器,导致不能关闭的bug解决方案 2014年8月30日 3233次浏览 相信很多前端朋友都用过jqueryeasyUI,jqueryeasyUI ...

  2. 在高通平台Android环境下编译内核模块【转】

    本文转载自:http://blog.xeonxu.info/blog/2012/12/04/zai-gao-tong-ping-tai-androidhuan-jing-xia-bian-yi-nei ...

  3. LINQ to Entities 不识别方法"System.String ToString()",因此该方法无法转换为存储表达式 的解决方法

    一.案例1,及解决方案: "LINQ to Entities 不识别方法"System.String ToString()",因此该方法无法转换为存储表达式." ...

  4. JS继承的实现方式

    JS作为面向对象的弱类型语言,继承也是其非常强大的特性之一.那么如何在JS中实现继承呢?让我们拭目以待. JS继承的实现方式 既然要实现继承,那么首先我们得有一个父类,代码如下: // 定义一个动物类 ...

  5. 在ubuntu环境安装youcompleteme

    sudo apt-get update #更新软件源 sudo apt-get clang #安装clang sudo apt-get cmake #安装cmake sudo apt-get inst ...

  6. C# winform控件之PictureBox详解

    PictureBox表示用于显示图像的 Windows 图片框控件https://msdn.microsoft.com/zh-cn/library/system.windows.forms.pictu ...

  7. bzoj2673

    限制这么多 肯定是网络流 考虑连边 首先我们计算出每行最多放的棋子数$sx[i]$,每列最多放的棋子数$sy[i]$ 首先由源点向第$i$行连流量为$sx[i]$费用为$0$的边,第$i$列向汇点连流 ...

  8. usg6500

  9. poj1475 Pushing Boxes[双重BFS(毒瘤搜索题)]

    地址. 很重要的搜索题.★★★ 吐槽:算是写过的一道码量比较大的搜索题了,细节多,还比较毒瘤.虽然是一遍AC的,其实我提前偷了大数据,但是思路还是想了好长时间,照理说想了半小时出不来,我就会翻题解,但 ...

  10. node.js Web应用框架Express入门指南

    node.js Web应用框架Express入门指南 作者: 字体:[增加 减小] 类型:转载 时间:2014-05-28 我要评论 这篇文章主要介绍了node.js Web应用框架Express入门 ...