有一点类似区间K值的求法。

这里有两颗树,一个是自己建的线段树,一个是题目中给定的树。以线段树和树进行区分。

首先离散化一下,以离散化后的结果建线段树,线段树的节点开了2维,一维保存当前以当前节点为权值的树的节点是往左走的,另一维是往右走的,用一个vector保存一下以当前i节点为结束的询问,因为所有的询问都是从根节点出发的,只需保存终点即可。

然后从根节点出发遍历整棵树,当走到当前节点时,枚举以当前节点的询问q[i],然后求出比q[i].x大的向左和向右走的节点个数,以及比它小的个数,如果有相等的直接为0,最后根据可能性加起来即可。

每走完一个节点,回退时,把当前节点更新为未走。

把树节点的权值跟询问的搞混了,WA一次。。搞了组数据才看出来

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define N 100010
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
#pragma comment(linker, "/STACK:1024000000,1024000000")
int s[N<<][],a[N<<],b[N];
map<int,int>f;
vector<int>ed[N];//儿子
vector<int>dd[N];//以i节点结束的询问
int g ;
struct node{
int v,x;
int ax,ay,f;
}p[N];
void up(int w)
{
s[w][] = s[w<<][]+s[w<<|][];//向左走
s[w][] = s[w<<][]+s[w<<|][];//向右走
}
void build(int l,int r,int w)
{
if(l==r)
{
s[w][] = s[w][] = ;
return ;
}
int m = (l+r)>>;
build(l,m,w<<);
build(m+,r,w<<|);
up(w);
}
void update(int p,int d,int dir,int l,int r,int w)
{
if(l==r)
{
s[w][dir] += d;
return ;
}
int m = (l+r)>>;
if(p<=m) update(p,d,dir,l,m,w<<);
else update(p,d,dir,m+,r,w<<|);
up(w);
}
int query(int a,int b,int dir,int l,int r,int w)
{
if(a<=l&&b>=r)
{
return s[w][dir];
}
int m = (l+r)>>;
int res=;
if(a<=m) res+=query(a,b,dir,l,m,w<<);
if(b>m) res+=query(a,b,dir,m+,r,w<<|);
return res;
}
void dfs(int u,int pre)
{
int i;
for(i = ; i < dd[u].size(); i++)
{
int k = dd[u][i];
int id = f[p[k].x];
// cout<<k<<endl;
int cnt1 = query(id,id,,,g,);
int cnt2 = query(id,id,,,g,);
//cout<<cnt1<<" "<<cnt2<<" "<<u<<" "<<id<<endl;
if(cnt1||cnt2)
{
p[k].f = ;
continue;
}
else
{
p[k].f = ;
int l0 = query(,id,,,g,);
int l1 = query(,id,,,g,);
int r0 = query(id,g,,,g,);
int r1 = query(id,g,,,g,);
// cout<<l0<<" "<<l1<<" "<<r0<<" "<<r1<<endl;
p[k].ay = r0+r1+*(l1+l0);
p[k].ax = l1;
}
}
for(i = ;i < ed[u].size() ; i++)
{
int v = ed[u][i];
int id = f[b[u]];
// cout<<id<<" "<<u<<endl;
if(i==)
{
update(id,,,,g,);
}
else update(id,,,,g,);
dfs(v,u);
if(i==)
update(id,-,,,g,);
else update(id,-,,,g,);
}
}
int main()
{
int t,i,n,m,q;
cin>>t;
while(t--)
{
scanf("%d",&n);
f.clear();
g = ;
for(i = ; i <=n; i++)
{
scanf("%d",&a[i]);
b[i] = a[i];
ed[i].clear();
dd[i].clear();
}
scanf("%d",&m);
for(i = ; i <= m; i++)
{
int u,l,r;
scanf("%d%d%d",&u,&l,&r);
ed[u].push_back(l);
ed[u].push_back(r);
}
scanf("%d",&q);
for(i = ;i <= q ;i++)
{
scanf("%d%d",&p[i].v,&p[i].x);
dd[p[i].v].push_back(i);
a[n+i] = p[i].x;
}
sort(a+,a+n+q+);
f[a[]] = ++g;
for(i = ; i <= n+q ; i++)
{
if(a[i]!=a[i-])
f[a[i]] = ++g;
}
build(,g,);
dfs(,-);
for(i = ; i <= q; i++)
{
if(p[i].f==)
printf("%d\n",);
else
printf("%d %d\n",p[i].ax,p[i].ay);
}
}
return ;
}

Partition(线段树的离线处理)的更多相关文章

  1. Codeforces1110F Nearest Leaf dfs + 线段树 + 询问离线

    Codeforces1110F dfs + 线段树 + 询问离线 F. Nearest Leaf Description: Let's define the Eulerian traversal of ...

  2. HDU 3874 Necklace (树状数组 | 线段树 的离线处理)

    Necklace Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  3. CF803G - Periodic RMQ Problem 动态开点线段树 或 离线

    CF 题意 有一个长度为n × k (<=1E9)的数组,有区间修改和区间查询最小值的操作. 思路 由于数组过大,直接做显然不行. 有两种做法,可以用动态开点版本的线段树,或者离线搞(还没搞)( ...

  4. NOIP2012借教室[线段树|离线 差分 二分答案]

    题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要 向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自 ...

  5. HDU 4288 Coder 【线段树+离线处理+离散化】

    题意略. 离线处理,离散化.然后就是简单的线段树了.需要根据mod 5的值来维护.具体看代码了. /* 线段树+离散化+离线处理 */ #include <cstdio> #include ...

  6. E - No Pain No Game 线段树 离线处理 区间排序

    E - No Pain No Game  HDU - 4630 这个题目很好,以后可以再写写.这个题目就是线段树的离线写法,推荐一个博客:https://blog.csdn.net/u01003321 ...

  7. 【luogu3733】【HAOI2017】 八纵八横 (线段树分治+线性基)

    Descroption 原题链接 给你一个\(n\)个点的图,有重边有自环保证连通,最开始有\(m\)条固定的边,要求你支持加边删边改边(均不涉及最初的\(m\)条边),每一次操作都求出图中经过\(1 ...

  8. 2019.01.13 bzoj4137: [FJOI2015]火星商店问题(线段树分治+可持久化01trie)

    传送门 题意:序列上有nnn个商店,有两种事件会发生: sss商店上进购标价为vvv的一个物品 求编号为[l,r][l,r][l,r]之间的位置买ddd天内新进购的所有物品与一个数xxx异或值的最大值 ...

  9. 洛谷T44252 线索_分治线段树_思维题

    分治线段树,其实就是将标记永久化,到最后再统一下传所有标记. 至于先后顺序,可以给每个节点开一个时间戳. 一般地,分治线段树用于离线,只查询一次答案的题目. 本题中,标记要被下传 222 次. Cod ...

随机推荐

  1. EDM文件编写规范及注意事项

    [设计EDM邮件] (1)乱码:你没法知道所有用户的系统环境,因此使用utf8来避免乱码是非常重要的 (2)绝对URL:若是相对URL,用户在打开页面是将看不到图片 (3)图片Alt属性:大多数邮件服 ...

  2. python操作oracle数据库

    本文主要介绍python对oracle数据库的操作学习 包含:oracle数据库在Windows操作系统下的安装和配置.python需要安装的第三方拓展包以及基本操作的样例学习. 1          ...

  3. 一个表格中选定的tr,显示在另一个表格中

    一.先获得表格A每点中行的下标index(); 二.申明一个数组,把下表全部push到数组中: 三.在用for循环遍历数组,同时申明html代码片段: 四.用html+=表格A tr:eq(arr[i ...

  4. HDU3065(AC自动机入门题)

    病毒侵袭持续中 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  5. initWithFrame 与 initWithCoder 、awakeFromNib 的方法理解笔记

    1. initWithFrame方法是什么? initWithFrame方法用来初始化并返回一个新的视图对象,根据指定的CGRect(尺寸). 当然,其他UI对象,也有initWithFrame方法, ...

  6. office2016专业增强版安装包和激活工具

    链接:https://pan.baidu.com/s/1j_gvpNBWo1rQ0xB49I_Ttw 密码:v2w7

  7. web开发并部署到Tomcat上

    1. eclipse配置tomcat https://jingyan.baidu.com/article/e4d08ffdabb0710fd2f60de9.html https://blog.csdn ...

  8. ElasticSearch基础+文档CRUD操作

    本篇博客是上一篇的延续,主要用来将年前学习ES的知识点做一个回顾,方便日后进行复习和汇总!因为近期项目中使用ES出现了点小问题,因此在这里做一个详细的汇总! [01]全文检索和Lucene (1)全文 ...

  9. 百度地图API示例 JS

    http://developer.baidu.com/map/jsdemo.htm#c2_2

  10. vc编程中出现 fatal error C1010: 在查找预编译头时遇到意外的文件结尾。是否忘记了向源中添加“#include "stdafx.h"”?

    解决办法菜单--〉项目--〉设置,出现“项目设置”对话框,左边展开项目,在“源文件”中找到出错的文件,然后在右边选择“C/C++”属性 页,在Category下拉框中选择“Precompiled He ...