题目

小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少

输入格式

第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。

输出格式

包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。

输入样例

5 6

13

0 2

0 3

1 2

1 3

2 0

2 1

2 4

2 5

2 6

3 2

3 3

4 3

5 2

2

输出样例

6

提示

图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。

所有数据满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。

注意:”恰好有k颗树“,这里的恰好不是有且只有,而是从>=k的树中恰好选k棵

题解

题目中的模数等于\(2^31\),所以int自然溢出就相当于取模

我们记一个点上下左右的树数量为u、d、l、r,则每个点的贡献是\(C_{u}^{k} * C_{d}^{k} * C_{l}^{k} * C_{r}^{k}\)

点的范围很大,我们将其离散化到100000以内

但总共\(W^2\)个点,不能直接算,但树只有\(W\)个,考虑从树出发

我们将所有树排序后,对于横坐标相同的两棵树之间的点,其式子中的\(C_{u}^{k} * C_{d}^{k}\)是一样的

我们用树状数组维护\(C_{l}^{k} * C_{r}^{k}\),就可以加速运算了

#include<iostream>
#include<cstdio>
#include<algorithm>
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int s[maxn],C[maxn][11],b[maxn],tot,n,k;
int U[maxn],D[maxn],L[maxn],R[maxn],V[maxn];
struct point{int x,y;}p[maxn];
int getn(int x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
inline bool operator <(const point& a,const point& b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
void add(int u,int v){while (u <= tot) s[u] += v,u += lbt(u);}
void mus(int u,int v){while (u <= tot) s[u] -= v,u += lbt(u);}
int query(int u){int ans = 0; while (u) ans += s[u],u -= lbt(u); return ans;}
int sum(int l,int r){return query(r) - query(l - 1);}
void cal(){
for (int i = 0; i <= n; i++){
C[i][0] = C[i][i] = 1;
for (int j = 1; j <= i && j <= 10; j++)
C[i][j] = C[i - 1][j] + C[i - 1][j - 1];
}
}
void init(){
read(); read();
n = read();
cal();
for (int i = 1; i <= n; i++)
b[i] = p[i].x = read(),p[i].y = read();
sort(b + 1,b + 1 + n); tot = 1;
for (int i = 2; i <= n; i++) if (b[i] != b[tot]) b[++tot] = b[i];
for (int i = 1; i <= n; i++) p[i].x = getn(p[i].x);
for (int i = 1; i <= n; i++) b[i] = p[i].y;
sort(b + 1,b + 1 + n); tot = 1;
for (int i = 2; i <= n; i++) if (b[i] != b[tot]) b[++tot] = b[i];
for (int i = 1; i <= n; i++) p[i].y = getn(p[i].y);
k = read();
}
void solve(){
sort(p + 1,p + 1 + n);
int ans = 0;
for (int i = 1; i <= n; i++) U[p[i].x]++,R[p[i].y]++;
for (int i = 1; i <= n; i++){
if (i > 1 && p[i - 1].x == p[i].x && p[i - 1].y + 1 < p[i].y)
ans += C[U[p[i].x]][k] * C[D[p[i].x]][k] * sum(p[i - 1].y + 1,p[i].y - 1);
U[p[i].x]--; D[p[i].x]++;
R[p[i].y]--; L[p[i].y]++;
add(p[i].y,-V[p[i].y]);
add(p[i].y,V[p[i].y] = C[L[p[i].y]][k] * C[R[p[i].y]][k]);
}
cout << (ans >= 0 ? ans : ans + 2147483647 + 1) << endl;
}
int main(){
init();
solve();
return 0;
}

BZOJ1227 [SDOI2009]虔诚的墓主人 【树状数组】的更多相关文章

  1. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  2. [luogu2154 SDOI2009] 虔诚的墓主人(树状数组+组合数)

    传送门 Solution 显然每个点的权值可以由当前点上下左右的树的数量用组合数\(O(1)\)求出,但这样枚举会T 那么我们考虑一段连续区间,对于一行中两个常青树中间的部分左右树的数量一定,我们可用 ...

  3. P2154 [SDOI2009]虔诚的墓主人 树状数组

    https://www.luogu.org/problemnew/show/P2154 题意 在一个坐标系中,有w(1e5)个点,这个图中空点的权值是正上,正下,正左,正右各取k个的排列组合情况.计算 ...

  4. BZOJ-1227 虔诚的墓主人 树状数组+离散化+组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MB Submit: 914 Solved: 431 [Submit][Statu ...

  5. BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*

    BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...

  6. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  7. bzoj1227: [SDOI2009]虔诚的墓主人(树状数组,组合数)

    传送门 首先,对于每一块墓地,如果上下左右各有$a,b,c,d$棵树,那么总的虔诚度就是$C_k^a*C_k^b*C_k^c*C_k^d$ 那么我们先把所有的点都给离散,然后按$x$为第一关键字,$y ...

  8. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  9. [bzoj1227] [SDOI2009]虔诚的墓主人

    终于填上了这个万年巨坑....从初二的时候就听说过这题...然后一直不敢写QAQ 现在感觉也不是很烦(然而我还是写麻烦了 离散化一波,预处理出组合数什么的.. 要维护对于当前行,每列上方和下方节点凑出 ...

随机推荐

  1. 从输入url到页面加载完成发生了什么详解

    这是一道经典的面试题,这道题没有一个标准的答案,它涉及很多的知识点,面试官会通过这道题了解你对哪一方面的知识比较擅长,然后继续追问看看你的掌握程度.当然我写的这些也只是我的一些简单的理解,从前端的角度 ...

  2. python之函数名的应用

    1. 函数名是一个特殊的变量 例题 例题1: a = 1 b = 2 c = a + b print(c) # 输出结果 3 # 总结 # 变量是否可以进行相加或者拼接操作是又后面指向的值来决定的,指 ...

  3. java,求1-100以内所有偶数的和。

    package study01; public class Even { public static void main(String[] args) { int sum = 0; for (int ...

  4. mutt+msmtp做linux邮件客户端

    mutt+msmtp做linux邮件客户端 1. 安装配置msmtp l  安装 wget https://sourceforge.net/projects/msmtp/files/msmtp/1.4 ...

  5. linux 下使用 curl 访问带多参数,GET掉参数解决方案

    url 为 http://mywebsite.com/index.php?a=1&b=2&c=3 web形式下访问url地址,使用 $_GET是可以获取到所有的参数 curl  -s  ...

  6. Flash as3.0 保存MovieClip运动轨迹到json文件

    //放在第一帧调用 import flash.events.Event; import flash.display.MovieClip; stage.addEventListener(Event.EN ...

  7. CF-1013 (2019/02/09 补)

    CF-1013 A. Piles With Stones 比较两个序列的和,因为只能拿走或者不拿,所以总数不能变大. B. And 答案只有 -1,0,1,2几种可能,所以对于每一种答案都暴力扫一次是 ...

  8. 【二分 最小割】cf808F. Card Game

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

  9. Linux网络配置指令

    版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址: https://www.cnblogs.com/poterliu/p/6686799.html 重启网卡service network ...

  10. 收集的免费API接口

    1.IP地址调用接口 这是淘宝的IP调用API http://ip.taobao.com/service/getIpInfo.php?ip=$ip 返回值:{"code":0,&q ...