hdu 3879 hdu 3917 构造最大权闭合图 俩经典题
hdu3879 base station : 各一个无向图,点的权是负的,边的权是正的。自己建一个子图,使得获利最大。
一看,就感觉按最大密度子图的构想:选了边那么连接的俩端点必需选,于是就以边做点,轻轻松松构造了最大权闭合图。简单题。分分钟搞定。
hdu3917 :road constructions :这题题目看了半天没理解。。。感觉描述的不好。。。一个有向图,每条路有响应公司承保,若选了该公司,那么该公司的路必需全部选,还有,该公司的承保的路的下面的一条路对应公司也要选,求最大获利。构图:开始在原图上瞎折腾,其实不然,用公司做结点,在原图上跑出关系,(若a公司选,则对应哪些公司 选),构造新图:最大权闭合之即可。。。。中午没睡醒。。迷迷糊糊的,因为1A的,数组开小了。。最讨厌用俩套链前来构图了。晕。。
再重说一次最大权闭合图解法:源点向正权点连边对应点权值,原图边容量inf,负权点向汇点连边权值绝对值,ans=正权和-最大流。
#include<iostream> //hdu3879
#include<queue>
#include<cstdio>
#include<cstring>
#include<set>
#include<vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxv=61000,maxe=300000;
int nume=0;int head[maxv];int e[maxe][3];
void inline adde(int i,int j,int c)
{
e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
e[nume++][2]=c;
e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
e[nume++][2]=0;
}
int ss,tt,n,m;
int vis[maxv];int lev[maxv];
bool bfs()
{
for(int i=0;i<maxv;i++)
vis[i]=lev[i]=0;
queue<int>q;
q.push(ss);
vis[ss]=1;
while(!q.empty())
{
int cur=q.front();
q.pop();
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(!vis[v]&&e[i][2]>0)
{
lev[v]=lev[cur]+1;
vis[v]=1;
q.push(v);
}
}
}
return vis[tt];
}
int dfs(int u,int minf)
{
if(u==tt||minf==0)return minf;
int sumf=0,f;
for(int i=head[u];i!=-1&&minf;i=e[i][1])
{
int v=e[i][0];
if(lev[v]==lev[u]+1&&e[i][2]>0)
{
f=dfs(v,minf<e[i][2]?minf:e[i][2]);
e[i][2]-=f;e[i^1][2]+=f;
sumf+=f;minf-=f;
}
}
if(!sumf) lev[u]=-1;
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())sum+=dfs(ss,inf);
return sum;
}; int cpy[maxv];int sumz=0;
void read_build()
{
for(int i=1;i<=n;i++)
{
scanf("%d",&cpy[i]);
adde(i,tt,cpy[i]);
}
int aa,bb,cc;
int numv=n+1;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&aa,&bb,&cc);
sumz+=cc;
adde(numv,aa,inf);
adde(numv,bb,inf);
adde(ss,numv++,cc);
}
/* for(int i=1;i<=m+2;i++)
for(int j=head[i];j!=-1;j=e[j][1])
{
if(j%2==0)
printf("%d->%d:%d\n",i,e[j][0],e[j][2]);
}*/
}
void init()
{
nume=0;sumz=0;
ss=n+m+1;tt=ss+1;
for(int i=0;i<maxv;i++)
{
head[i]=-1;
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
read_build();
int ans;
ans=sumz-dinic();
printf("%d\n",ans);
}
return 0;
}
#include<iostream>//3917
#include<queue>
#include<cstdio>
#include<cstring>
#include<set>
#include<vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxv=5100,maxe=100000;
int nume=0;int head[maxv];int e[maxe][3];
void inline adde(int i,int j,int c)
{
e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
e[nume++][2]=c;
e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
e[nume++][2]=0;
}
int ss,tt,n,m,k;
int vis[maxv];int lev[maxv];
bool bfs()
{
for(int i=0;i<maxv;i++)
vis[i]=lev[i]=0;
queue<int>q;
q.push(ss);
vis[ss]=1;
while(!q.empty())
{
int cur=q.front();
q.pop();
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(!vis[v]&&e[i][2]>0)
{
lev[v]=lev[cur]+1;
vis[v]=1;
q.push(v);
}
}
}
return vis[tt];
}
int dfs(int u,int minf)
{
if(u==tt||minf==0)return minf;
int sumf=0,f;
for(int i=head[u];i!=-1&&minf;i=e[i][1])
{
int v=e[i][0];
if(lev[v]==lev[u]+1&&e[i][2]>0)
{
f=dfs(v,minf<e[i][2]?minf:e[i][2]);
e[i][2]-=f;e[i^1][2]+=f;
sumf+=f;minf-=f;
}
}
if(!sumf) lev[u]=-1;
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())sum+=dfs(ss,inf);
return sum;
};
int nume2=0;int head2[maxv];int e2[maxe][3];
void inline adde2(int i,int j,int c)
{
e2[nume2][0]=j; e2[nume2][1]=head2[i]; head2[i]=nume2;
e2[nume2++][2]=c;
}
int cpy[maxv];int sumz=0;
void read_build()
{
for(int i=1;i<=m;i++)
{
scanf("%d",&cpy[i]);
}
scanf("%d",&k);
int aa,bb,cc,dd;
for(int i=0;i<k;i++)
{
scanf("%d%d%d%d",&aa,&bb,&cc,&dd);
cpy[cc]-=dd;
adde2(aa,bb,cc);
}
for(int i=1;i<=n;i++)
for(int j=head2[i];j!=-1;j=e2[j][1])
{
for(int vj=head2[e2[j][0]];vj!=-1;vj=e2[vj][1])
{
if(e2[vj][2]!=e2[j][2])
adde(e2[j][2],e2[vj][2],inf);
}
}
for(int i=1;i<=m;i++)
{
if(cpy[i]>0)
{
adde(ss,i,cpy[i]);
sumz+=cpy[i];
}
else
adde(i,tt,-cpy[i]);
}
/* for(int i=1;i<=m+2;i++)
for(int j=head[i];j!=-1;j=e[j][1])
{
if(j%2==0)
printf("%d->%d:%d\n",i,e[j][0],e[j][2]);
}*/
}
void init()
{
nume=0;sumz=0;nume2=0;
ss=m+1;tt=ss+1;
for(int i=0;i<maxv;i++)
{
head2[i]=head[i]=-1;
}
}
int main()
{
while(~scanf("%d%d",&n,&m)&&(n||m))
{
init();
read_build();
int ans;
ans=sumz-dinic();
if(ans<0)ans=0;
printf("%d\n",ans);
}
return 0;
}
hdu 3879 hdu 3917 构造最大权闭合图 俩经典题的更多相关文章
- hdu 3879 最大权闭合图(裸题)
/* 裸的最大权闭合图 解:参见胡波涛的<最小割模型在信息学竞赛中的应用 #include<stdio.h> #include<string.h> #include< ...
- HDU 3061:Battle(最大权闭合图)
http://acm.hdu.edu.cn/showproblem.php?pid=3061 题意:中文题意. 思路:和上一题神似啊,比上一题还简单,重新看了遍论文让我对这个理解更加深了. 闭合图:如 ...
- hdu 4971/ 2014多校/最大权闭合图
题意:n个项目(每一个相应获得一定价值).m个技术问题(每一个须要支出一定价值),每一个项目必须要攻克若干个技术问题.技术难题之间有拓扑关系. 关键是建图.一看,第一感觉就是最大权闭合图,马上建好了图 ...
- hdu 2987最大权闭合图模板类型题
/* 最大权闭合图模板类型的题,考验对知识概念的理解. 题意:如今要辞退一部分员工.辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属.求最大利益和辞退的最小人数. 最大权闭 ...
- hdu 4971 多校10最大权闭合图
/* 很明显的最大权闭合图题 */ #include<stdio.h> #include<string.h> #include<queue> using names ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
- hdu 3061 Battle 最大权闭合图
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3061 由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅.而他上任的第一天,就面对了一场极其困难的 ...
- POJ 2987 Firing(最大流最小割の最大权闭合图)
Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...
- 洛谷P2762 太空飞行计划问题(最大权闭合图)
题意 有$m$个实验,$n$中器材,每个实验需要使用一些器材 每个实验有收入,每个器材有花费 最大化收入 - 花费 Sol 最大权闭合图的经典应用 从$S$向每个实验连流量为该实验收入的边 从每个器材 ...
随机推荐
- python爬虫入门八:多进程/多线程
什么是多线程/多进程 引用虫师的解释: 计算机程序只不过是磁盘中可执行的,二进制(或其它类型)的数据.它们只有在被读取到内存中,被操作系统调用的时候才开始它们的生命期. 进程(有时被称为重量级进程)是 ...
- golang echo livereload
echo on port 1323 gin -a 1323 run server.go go get github.com/codegangsta/gin gin -h
- 常用的一些api
发送手机短信 // 发送短信给安全号码 SmsManager smsManager = SmsManager.getDefault(); smsManager.sendTextMessage(phon ...
- daily algorithm 判断链表是否有环
public static boolean isLoopLink(ListNode head) { if (head == null) { return false; } ListNode fast ...
- OpenStack之虚机冷迁移代码简析
OpenStack之虚机冷迁移代码简析 前不久我们看了openstack的热迁移代码,并进行了简单的分析.真的,很简单的分析.现在天气凉了,为了应时令,再简析下虚机冷迁移的代码. 还是老样子,前端的H ...
- Python框架之Django学习笔记(十)
又是一周周末,如约学习Django框架.在上一次,介绍了MVC开发模式以及Django自己的MVT开发模式,此次,就从数据处理层Model谈起. 数据库配置 首先,我们需要做些初始配置:我们需要告诉D ...
- [转]9个基于Java的搜索引擎框架
9个基于Java的搜索引擎框架 在这个信息相当繁杂的互联网时代,我们已经学会了如何利用搜索引擎这个强大的利器来找寻目标信息,比如你会在Google上搜索情人节如何讨女朋友欢心,你也会在百度上寻找正规的 ...
- Robotium测试报告的生成方法(下)
7.4 测试报告优化 通过上面的三种方法,我们都可以得到一个Xml格式的测试报告,不过这不是我们想要的,因为这样的报告读起来很费劲,而且这样的报告发给领导们也是不行的.所以我们要美化一下才行,一般都是 ...
- linux常用命令与系统管理常用命令
linux命令:切换用户:开启ftp服务:service vsftpd start 开启ssh服务:service sshd start普通用户切换到超级用户:su rootlogout:(注销)un ...
- jmeter全局变量配置:将token运用到全局(跨线程组使用变量)
请注意元器件的执行顺序: 请将提取token的配置原件放在设置全局变量的配置元器件前面(本来是一个超级马虎的人,真是俗称“方脑壳”啊) 1.获取登录后的token(提取可以用json path Ext ...