用keras作CNN卷积网络书本分类(书本、非书本)
本文介绍如何使用keras作图片分类(2分类与多分类,其实就一个参数的区别。。。呵呵)
先来看看解决的问题:从一堆图片中分出是不是书本,也就是最终给图片标签上:“书本“、“非书本”,简单吧。
先来看看网络模型,用到了卷积和全连接层,最后套上SOFTMAX算出各自概率,输出ONE-HOT码,主要部件就是这些,下面的nb_classes就是用来控制分类数的,本文是2分类:
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD def Net_model(nb_classes, lr=0.001,decay=1e-6,momentum=0.9):
model = Sequential()
model.add(Convolution2D(filters=10, kernel_size=(5,5),
padding='valid',
input_shape=(200, 200, 3)))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(filters=20, kernel_size=(10,10)))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) model.add(Flatten())
model.add(Dense(1000))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax')) sgd = SGD(lr=lr, decay=decay, momentum=momentum, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd) return model
上面的input_shape=(200, 200, 3)代表图片像素大小为宽高为200,200,并且包含RGB 3通道的图片,不是灰度图片(只要1个通道)
也就是说送入此网络的图片宽高必须200*200*3;如果不是这个shape就需要resize到这个shape
下面来看看训练程序,首先肯定是要收集些照片,书本、非书本的照片,我是分别放在了0文件夹和1文件夹下了,再带个验证用途的文件夹validate:
训练程序涉及到几个地方:照片文件的读取、模型加载训练与保存、可视化训练过程中的损失函数value
照片文件的读取
import cv2
import os
import numpy as np
import keras def loadImages():
imageList=[]
labelList=[] rootdir="d:\\books\\0"
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (200, 200))#resize到网络input的shape
imageList.append(f)
labelList.append(0)#类别0 rootdir="d:\\books\\1"
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (200, 200))#resize到网络input的shape
imageList.append(f)
labelList.append(1)#类别1 return np.asarray(imageList), keras.utils.to_categorical(labelList, 2)
关于(200,200)这个shape怎么得来的,只是几月前开始玩opencv时随便写了个数值,后来想利用那些图片,就适应到这个shape了
keras.utils.to_categorical函数类似numpy.onehot、tf.one_hot这些,只是one hot的keras封装
模型加载训练与保存
nb_classes = 2
nb_epoch = 30
nb_step = 6
batch_size = 3 x,y=loadImages() from keras.preprocessing.image import ImageDataGenerator
dataGenerator=ImageDataGenerator()
dataGenerator.fit(x)
data_generator=dataGenerator.flow(x, y, batch_size, True)#generator函数,用来生成批处理数据(从loadImages中) model=NetModule.Net_model(nb_classes=nb_classes, lr=0.0001) #加载网络模型 history=model.fit_generator(data_generator, epochs=nb_epoch, steps_per_epoch=nb_step, shuffle=True)#训练网络,并且返回每次epoch的损失value model.save_weights('D:\\Documents\\Visual Studio 2017\\Projects\\ConsoleApp9\\PythonApplication1\\书本识别\\trained_model_weights.h5')#保存权重
print("DONE, model saved in path-->D:\\Documents\\Visual Studio 2017\\Projects\\ConsoleApp9\\PythonApplication1\\书本识别\\trained_model_weights.h5")
ImageDataGenerator构造函数有很多参数,主要用来提升数据质量,比如要不要标准化数字
lr=0.001这个参数要看经验,大了会导致不收敛,训练的时候经常由于这个参数的问题导致重复训练,这在没有GPU的情况下很是痛苦。。痛苦。。。痛苦。。。
model.save_weights是保存权重,但是不保存网络模型 ,对应的是model.load_weights方法
model.save是保存网络+权重,只是。。。。此例中用save_weights保存的h5文件是125M,但用save方法保存后,h5文件就增大为280M了。。。
上面2个save方法都能finetune,只是灵活度不一样。
可视化训练过程中的损失函数value
import matplotlib.pyplot as plt plt.plot(history.history['loss'])
plt.show()
貌似没啥好补充的。。。
AND。。。。看看预测部分吧,这部分加载图片、加载模型,似乎都和训练部分雷同:
def loadImages():
imageList=[] rootdir="d:\\books\\validate"
list =os.listdir(rootdir)
for item in list:
path=os.path.join(rootdir,item)
if(os.path.isfile(path)):
f=cv2.imread(path)
f=cv2.resize(f, (200, 200))
imageList.append(f) return np.asarray(imageList) x=loadImages() x=np.asarray(x) model=NetModule.Net_model(nb_classes=2, lr=0.0001)
model.load_weights('D:\\Documents\\Visual Studio 2017\\Projects\\ConsoleApp9\\PythonApplication1\\书本识别\\trained_model_weights.h5') print(model.predict(x))
print(model.predict_classes(x))
y=convert2label(model.predict_classes(x))
print(y)
predict的返回其实是softmax层返回的概率数值,是<=1的float
predict_classes返回的是经过one-hot处理后的数值,此时只有0、1两种数值(最大的value会被返回称为1,其他都为0)
convert2label:
def convert2label(vector):
string_array=[]
for v in vector:
if v==1:
string_array.append('BOOK')
else:
string_array.append('NOT BOOK')
return string_array
这个函数是用来把0、1转换成文本的,小插曲:
本来这里是中文的“书本”、“非书本”,后来和女儿一起调试时发现都显示成了问号,应该是中文字符问题,就改成了英文显示,和女儿一起写代码是种乐趣啊!
本来只是显示文本,感觉太无聊了,因此加上了opencv显示图片+分类文本的代码段:
for i in range(len(x)):
cv2.putText(x[i], y[i], (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2)
cv2.imshow('image'+str(i), x[i]) cv2.waitKey(-1)
OK, 2018年继续学习,继续科学信仰。
用keras作CNN卷积网络书本分类(书本、非书本)的更多相关文章
- 1. CNN卷积网络-初识
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面, 它的神经元间的连接是 ...
- 3. CNN卷积网络-反向更新
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 如果读者详细的了解了DNN神经网络的反向更新,那对我们今天的学习会有很大的帮助.我们的CNN ...
- 2. CNN卷积网络-前向传播算法
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 我们已经了解了CNN的结构,CNN主要结构有输入层,一些卷积层和池化层,后面是DNN全连接层 ...
- Deeplearning 两层cnn卷积网络详解
https://blog.csdn.net/u013203733/article/details/79074452 转载地址: https://www.cnblogs.com/sunshineatno ...
- 用keras的cnn做人脸分类
keras介绍 Keras是一个简约,高度模块化的神经网络库.采用Python / Theano开发. 使用Keras如果你需要一个深度学习库: 可以很容易和快速实现原型(通过总模块化,极简主义,和可 ...
- keras搭建密集连接网络/卷积网络/循环网络
输入模式与网络架构间的对应关系: 向量数据:密集连接网络(Dense层) 图像数据:二维卷积神经网络 声音数据(比如波形):一维卷积神经网络(首选)或循环神经网络 文本数据:一维卷积神经网络(首选)或 ...
- 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...
- Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例
CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...
- 机器学习-计算机视觉和卷积网络CNN
概述 对于计算机视觉的应用现在是非常广泛的,但是它背后的原理其实非常简单,就是将每一个像素的值pixel输入到一个DNN中,然后让这个神经网络去学习这个模型,最后去应用这个模型就可以了.听起来是不是很 ...
随机推荐
- sqlmap命令
-u #注入点 -f #指纹判别数据库类型 -b #获取数据库版本信息 -p #指定可测试的参数(?page=1&id=2 -p "page,id") -D "& ...
- 在没有DOM操作的日子里,我是怎么熬过来的(上)
前言 在我动笔写这篇文章的时候,我刚刚从我的项目中删除了最后一行JQuery代码.至于我为何要这么做,请听闰土娓娓道来.前几年我还在想,假如有一天,前端世界里不能再直接操作dom了,我该怎么办?没想到 ...
- Beautifulsoup分解
from urllib.request import Request, ProxyHandler from urllib.request import build_opener from bs4 im ...
- js学习笔记(延时器)
//setTimeout() //功能:设置一个延时器 //语法:var timer = window.setTimeout(code,millisec); //参数: code:是任何合 ...
- 深入理解Java虚拟机---学习感悟以及笔记
一.为什么要学习Java虚拟机? 这里我们使用举例来说明为什么要学习Java虚拟机,其实这个问题就和为什么要学习数据结构和算法是一个道理,工欲善其事,必先利其器.曾经的我经常害怕处理内存溢 ...
- 学问Chat UI(4)
前言 写这个组件是在几个月前,那时候是因为老大讲RN项目APP的通讯聊天部分后面有可能自己实现,让我那时候尝试着搞下Android通讯聊天UI实现的部分,在这期间,找了不少的Android原生项目:蘑 ...
- HDU 1216 Assistance Required 埃拉托色尼色筛法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1216 思路:色筛法 代码(1): #include<iostream>//-------- ...
- Yahoo网站性能优化的34条军规
1.尽量减少HTTP请求次数 终端用户响应的时间中,有80%用于下载各项内容,这部分时间包括下载页面中的图像.样式表.脚本.Flash等.通过减少页面中的元素可以减少HTTP请求的次数,这是提高网页速 ...
- 主流PHP框架间的比较(Zend Framework,CakePHP,CodeIgniter,Symfony,ThinkPHP,FleaPHP)
Zend Framework 优点: Zend Framework大量应用了PHP5中面向对象的新特征:接口.异常.抽象类.SPL等等.这些东西的应用让Zend Framework具有高度的模块化和灵 ...
- Linux压力测试软件Stress安装及使用指南
一.Stress是什么 stress是一个linux下的压力测试工具,专门为那些想要测试自己的系统,完全高负荷和监督这些设备运行的用户. 二.安装 将stress的安装包上传并解压到linux服务 ...