题目描述

小强喜欢数列。有一天,他心血来潮,写下了三个长度均为n的数列。

阿米巴也很喜欢数列。但是他只喜欢其中一种,波动数列。

阿米巴把他的喜好告诉了小强。小强便打算找出这三个数列内的最长波动数列。

也就是说,如果我们将三个数列记做a[n][3],他必须要构造一个二元组序列:<p[i], q[i]>,使得对于任何 i>1 有:

p[i] > p[i-1]

若q[i] = 0,a[p[i]][q[i]] >= a[p[i-1]][q[i-1]]

若q[i] = 1,a[p[i]][q[i]] <= a[p[i-1]][q[i-1]]

若q[i] = 2,只要保持段内同向即可(就是对于连续的一段q[i]=2,要么都有a[p[i]][q[i]] >= a[p[i-1]][q[i-1]],要么都有a[p[i]][q[i]] <= a[p[i-1]][q[i-1]])。

小强希望这个二元组序列尽可能长。

提示:当q[i] != q[i-1]时,数列的增减性由q[i]而非q[i-1]决定。

清晰版题目描述

小强拿到一个3×n的数组,要在每一列选一个数(或者不选),满足以下条件:

1.如果在第一行选,那它必须大于等于上一个数

2.如果在第二行选,那么必须小于等于上一个数

3.如果在第三行选,对于连续的一段在第三行选的数,必须满足方向相同(都小于等于上一个数或者都大于等于上一个数)

  清晰版描述简直坑人。。。

  思路非常明显,智障dp。状态转移方程不读错题的话简直秒出。之后考虑转移优化。显然,一个范围内的最大值可以用线段树维护,当然要事先吧数据离散化。代码很简单,二十分钟就可以敲完,然后我就爆了一个钟的空间23333

#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000000+10
typedef long long LL;
int n,tot=,ans=,pos[][MAXN],dp[][MAXN],tr[][MAXN*];
LL a[][MAXN],b[MAXN*];
void pushup(int t,int k){tr[t][k]=max(tr[t][k<<],tr[t][k<<|]);}
void build(int t,int k,int l,int r){
tr[t][k]=;
if(l==r)return;
int mid=(l+r)>>;
build(t,k<<,l,mid);
build(t,k<<|,mid+,r);
}
void update(int t,int k,int l,int r,int p,int val){
if(l==r&&l==p){
tr[t][k]=val;
return;
}
int mid=(l+r)>>;
if(p<=mid)update(t,k<<,l,mid,p,val);
else update(t,k<<|,mid+,r,p,val);
pushup(t,k);
}
int query(int t,int k,int l,int r,int L,int R){
if(l>=L&&r<=R)return tr[t][k];
int mid=(l+r)>>;
if(R<=mid)return query(t,k<<,l,mid,L,R);
else if(L>mid)return query(t,k<<|,mid+,r,L,R);
else return max(query(t,k<<,l,mid,L,R),query(t,k<<|,mid+,r,L,R));
}
int main(){
//freopen("data.in","r",stdin);
scanf("%d",&n);
for(int i=;i<=;i++)
for(int j=;j<=n;j++){
scanf("%lld",&a[i][j]);
b[++tot]=a[i][j];
}
sort(b+,b+tot+);
tot=unique(b+,b+tot+)-b,tot--;
for(int i=;i<=;i++)build(i,,,tot);
for(int i=;i<=;i++)
for(int j=;j<=n;j++)
pos[i][j]=lower_bound(b+,b+tot+,a[i][j])-b; for(int i=;i<=;i++)update(i,,,tot,pos[i==?:i][],),dp[i][]=;
for(int i=;i<=n;i++){
for(int k=;k<=;k++)dp[k][i]=;
for(int k=;k<=;k++){
if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,,pos[][i])+);
else if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,pos[][i],tot)+);
else if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,pos[][i],tot)+);
else
for(int j=;j<=;j++)
if(j!=)dp[k][i]=max(dp[k][i],query(j,,,tot,,pos[][i])+);
}
for(int k=;k<=;k++){
update(k,,,tot,pos[k==?:k][i],dp[k][i]);
ans=max(ans,dp[k][i]);
}
}
printf("%d\n",ans);
return ;
}

洛谷 P3928 Sequence的更多相关文章

  1. 洛谷P3928 Sequence2(dp,线段树)

    题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...

  2. [洛谷P5136]sequence

    题目大意:有$T(T\leqslant10^5)$组询问,每次求$A_n(n\leqslant10^{18})$:$$A_n=\left\lceil\left(\dfrac{\sqrt5+1}2\ri ...

  3. 洛谷P3928 SAC E#1 - 一道简单题 Sequence2

    提交地址 题目背景 小强和阿米巴是好朋友. 题目描述 小强喜欢数列.有一天,他心血来潮,写下了三个长度均为n的数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种,波动数列. 阿米巴把他的喜好告诉了小强. ...

  4. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  5. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  6. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  7. 洛谷P1432 倒水问题(CODEVS.1226)

    To 洛谷.1432 倒水问题 题目背景 In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were co ...

  8. 洛谷P3459 [POI2007]MEG-Megalopolis [树链剖分]

    题目传送门 MEG 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postma ...

  9. [洛谷P2852] [USACO06DEC]牛奶模式Milk Patterns

    洛谷题目链接:[USACO06DEC]牛奶模式Milk Patterns 题目描述 Farmer John has noticed that the quality of milk given by ...

随机推荐

  1. python、java和php的百度指数对比

    Python: Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议.Python语法简洁清晰,特色之一是强制用空白符( ...

  2. java使用for循环做猜数字游戏

    package org.llh.test;import java.util.Random;import java.util.Scanner;/** * 猜数字游戏 *  * @author llh * ...

  3. SpringMVC自定义配置消息转换器踩坑总结

    问题描述 最近在开发时候碰到一个问题,springmvc页面向后台传数据的时候,通常我是这样处理的,在前台把数据打成一个json,在后台接口中使用@requestbody定义一个对象来接收,但是这次数 ...

  4. AngularJS学习篇(十四)

    AngularJS 事件 ng-click 指令 ng-click 指令定义了 AngularJS 点击事件. <!DOCTYPE html> <html> <head& ...

  5. Grunt打包之seajs项目【转】

    原文:http://www.cnblogs.com/accordion/p/4508154.html grunt与seajs grunt是前端流行的自定义任务的脚手架工具,我们可以使用grunt来为我 ...

  6. JavaScript核心参考

    Array 方法 concat() 把元素衔接到数组中. every() 测试断言函数是否对每个数组元素都为真. filter() 返回满足断言函数的数组元素. forEach() 为数组的每一个元素 ...

  7. 分页查询时,使用cookie保存上次的查询条件。jQuery实现方法以及中间遇到的坑

    今天做分页查询时需要在跳转页面时保存上次查询的条件,如下: 实现的大致思路就是用cookie本地保存. 其中需要用到jQuery.Cookie插件. 使用方法很简单: 存数据:$.cookie(“ke ...

  8. Java中Httpsession是如何实现的?

    HTTP协议(http://www.w3.org/Protocols/)是“一次性单向”协议. 服务端不能主动连接客户端,只能被动等待并答复客户端请求.客户端连接服务端,发出一个HTTP Reques ...

  9. 非对称加密技术- RSA算法数学原理分析

    非对称加密技术,在现在网络中,有非常广泛应用.加密技术更是数字货币的基础. 所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密. 但是对于其原理大部分同学应 ...

  10. jenkins+docker 持续构建非docker in docker jenkins docker svn maven

    工欲善其事必先利其器,为了解脱程序员的,我们程序员本身发明了很多好用的工具,通过各种工具的组合来达到我们想要的结果 本文采用jenkins docker svn maven作为相关工具,项目sprin ...