题目描述

小强喜欢数列。有一天,他心血来潮,写下了三个长度均为n的数列。

阿米巴也很喜欢数列。但是他只喜欢其中一种,波动数列。

阿米巴把他的喜好告诉了小强。小强便打算找出这三个数列内的最长波动数列。

也就是说,如果我们将三个数列记做a[n][3],他必须要构造一个二元组序列:<p[i], q[i]>,使得对于任何 i>1 有:

p[i] > p[i-1]

若q[i] = 0,a[p[i]][q[i]] >= a[p[i-1]][q[i-1]]

若q[i] = 1,a[p[i]][q[i]] <= a[p[i-1]][q[i-1]]

若q[i] = 2,只要保持段内同向即可(就是对于连续的一段q[i]=2,要么都有a[p[i]][q[i]] >= a[p[i-1]][q[i-1]],要么都有a[p[i]][q[i]] <= a[p[i-1]][q[i-1]])。

小强希望这个二元组序列尽可能长。

提示:当q[i] != q[i-1]时,数列的增减性由q[i]而非q[i-1]决定。

清晰版题目描述

小强拿到一个3×n的数组,要在每一列选一个数(或者不选),满足以下条件:

1.如果在第一行选,那它必须大于等于上一个数

2.如果在第二行选,那么必须小于等于上一个数

3.如果在第三行选,对于连续的一段在第三行选的数,必须满足方向相同(都小于等于上一个数或者都大于等于上一个数)

  清晰版描述简直坑人。。。

  思路非常明显,智障dp。状态转移方程不读错题的话简直秒出。之后考虑转移优化。显然,一个范围内的最大值可以用线段树维护,当然要事先吧数据离散化。代码很简单,二十分钟就可以敲完,然后我就爆了一个钟的空间23333

#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000000+10
typedef long long LL;
int n,tot=,ans=,pos[][MAXN],dp[][MAXN],tr[][MAXN*];
LL a[][MAXN],b[MAXN*];
void pushup(int t,int k){tr[t][k]=max(tr[t][k<<],tr[t][k<<|]);}
void build(int t,int k,int l,int r){
tr[t][k]=;
if(l==r)return;
int mid=(l+r)>>;
build(t,k<<,l,mid);
build(t,k<<|,mid+,r);
}
void update(int t,int k,int l,int r,int p,int val){
if(l==r&&l==p){
tr[t][k]=val;
return;
}
int mid=(l+r)>>;
if(p<=mid)update(t,k<<,l,mid,p,val);
else update(t,k<<|,mid+,r,p,val);
pushup(t,k);
}
int query(int t,int k,int l,int r,int L,int R){
if(l>=L&&r<=R)return tr[t][k];
int mid=(l+r)>>;
if(R<=mid)return query(t,k<<,l,mid,L,R);
else if(L>mid)return query(t,k<<|,mid+,r,L,R);
else return max(query(t,k<<,l,mid,L,R),query(t,k<<|,mid+,r,L,R));
}
int main(){
//freopen("data.in","r",stdin);
scanf("%d",&n);
for(int i=;i<=;i++)
for(int j=;j<=n;j++){
scanf("%lld",&a[i][j]);
b[++tot]=a[i][j];
}
sort(b+,b+tot+);
tot=unique(b+,b+tot+)-b,tot--;
for(int i=;i<=;i++)build(i,,,tot);
for(int i=;i<=;i++)
for(int j=;j<=n;j++)
pos[i][j]=lower_bound(b+,b+tot+,a[i][j])-b; for(int i=;i<=;i++)update(i,,,tot,pos[i==?:i][],),dp[i][]=;
for(int i=;i<=n;i++){
for(int k=;k<=;k++)dp[k][i]=;
for(int k=;k<=;k++){
if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,,pos[][i])+);
else if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,pos[][i],tot)+);
else if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,pos[][i],tot)+);
else
for(int j=;j<=;j++)
if(j!=)dp[k][i]=max(dp[k][i],query(j,,,tot,,pos[][i])+);
}
for(int k=;k<=;k++){
update(k,,,tot,pos[k==?:k][i],dp[k][i]);
ans=max(ans,dp[k][i]);
}
}
printf("%d\n",ans);
return ;
}

洛谷 P3928 Sequence的更多相关文章

  1. 洛谷P3928 Sequence2(dp,线段树)

    题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...

  2. [洛谷P5136]sequence

    题目大意:有$T(T\leqslant10^5)$组询问,每次求$A_n(n\leqslant10^{18})$:$$A_n=\left\lceil\left(\dfrac{\sqrt5+1}2\ri ...

  3. 洛谷P3928 SAC E#1 - 一道简单题 Sequence2

    提交地址 题目背景 小强和阿米巴是好朋友. 题目描述 小强喜欢数列.有一天,他心血来潮,写下了三个长度均为n的数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种,波动数列. 阿米巴把他的喜好告诉了小强. ...

  4. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  5. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  6. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  7. 洛谷P1432 倒水问题(CODEVS.1226)

    To 洛谷.1432 倒水问题 题目背景 In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were co ...

  8. 洛谷P3459 [POI2007]MEG-Megalopolis [树链剖分]

    题目传送门 MEG 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postma ...

  9. [洛谷P2852] [USACO06DEC]牛奶模式Milk Patterns

    洛谷题目链接:[USACO06DEC]牛奶模式Milk Patterns 题目描述 Farmer John has noticed that the quality of milk given by ...

随机推荐

  1. Leetcode题解(十六)

    44 ----------------------------------------------------------------分割线------------------------------ ...

  2. 2017广东工业大学程序设计竞赛决赛-tmk买礼物

    tmk买礼物 Description 今天是校赛的日子,为了庆祝这么喜庆的日子,TMK打算买些礼物给女票LSH庆祝一下. TMK进入了雪梨超市,然后刚踏入的一瞬间,店主就对TMK说:“恭喜你成为了本店 ...

  3. Windows Message Queue

    Windows Message Queue Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  4. P3003 [USACO10DEC]苹果交货Apple Delivery

    题目描述 Bessie has two crisp red apples to deliver to two of her friends in the herd. Of course, she tr ...

  5. 入门到熟练-Eclipse开发工具

    1. 概述 本文用于Eclipse说明开发功能的各种配置.希望可以帮助到对于Eclipse工具设置不同熟练的朋友,快速上手Eclipse开发工具. 2. Eclipse的配置 2.1. 设置Eclip ...

  6. oracle数据库表实现主键自增功能

    有关oracle中自增序列sequence+触发器trigger:实现数据表TABDATA_LIVE_CYCLE中的主键id的自增. CREATE SEQUENCE TABDATA_LIVE_CYCL ...

  7. 【1】maven来管理我的SSM项目

    新建个maven项目,第一步当然是配置好自己需要的jar包,maven使用pom.xml管理 并不是每一个都有用,但是都是常见jar,方便以后自己调用来查找 <project xmlns=&qu ...

  8. HTTPS 建立连接的详细过程

    HTTPS是在HTTP的基础上和ssl/tls证书结合起来的一种协议,保证了传输过程中的安全性,减少了被恶意劫持的可能.很好的解决了解决了http的三个缺点(被监听.被篡改.被伪装) 对称加密和非对称 ...

  9. .Net 中通用的FormatString格式符整理

    格式化日期和数字的字符串经常要用到这个, 就把帮助里面的东西大概整理了一些列在这里了. 下表描述了用来格式化 DateTime 对象的标准格式说明符.格式说明符 名称 说明 d 短日期模式 显示由与当 ...

  10. SpringMVC注解HelloWorld

    今天整理一下SpringMVC注解 欢迎拍砖 @RequestMapping RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上.用于类上,表示类中的所有响应请求的方法都是 ...