作者:桂。

时间:2017-04-26  12:17:42

链接:http://www.cnblogs.com/xingshansi/p/6767980.html


前言

之前分析的感知机、主成分分析(Principle component analysis, PCA)包括后面看的支撑向量机(Support vector machines, SVM),都有用到核函数。核函数是将信号映射到高维,而PCA一般用来降维。这里简单梳理一下核函数的知识:

  1)核函数基本概念;

  2)核函数的意义;

内容为自己的学习记录,其中多有参考他人,最后一并给出链接。

一、核函数基本概念

先来看看核函数的定义:

核函数:是映射关系的内积,映射函数本身仅仅是一种映射关系,并没有增加维度的特性,不过可以利用核函数的特性,构造可以增加维度的核函数,这通常是我们希望的

例如这样一个图:

二维映射到三维,区分就更容易了,这是聚类、分类常用核函数的原因。为什么PCA这样一个降维算法也用核函数呢?

左图为原数据,右图为映射到三维的数据,可以看出:同样是降到1维,先通过Kernel映射到(Kernel是映射的内积,不要弄乱了)三维,再投影到1维,就容易分离开,这就是Kernel在PCA降维中的应用,本质还是对原有数据增加维度。

既然核函数这么神奇,就看看它的来龙去脉。

二、核函数的意义

  A-核函数常见应用

先来看看核函数几个常用的地方:

1.核感知机

在前面分析感知机时提到

2.核聚类(Kernel Kmeans)

在前面分析核聚类时提到

3.核PCA(kernel PCA)

具体定义可以参考wikipedia,根据前文分析的PCA步骤,有一步是利用相关矩阵的特征值分解,看看相关矩阵:

又看到了相乘的形式,自然可以用Kernel:

4.支撑向量机SVM

支撑向量机对偶形式的目标函数:

又看到了的形式,从而得到SVM的核函数形式:

  B-核函数为什么可以映射到高维?

1.为什么不用映射函数,而用他们的内积形式,即Kernel函数?

因为(x,z)一起出现的时候,有许多固定的形式可以调用,而不必求解或者关心的具体形式,这大大简化了求解。

2.什么样的函数才可以叫做核函数?

直接给出条件:

具体参考:李航《统计学习方法》p120~122。

3.为什么实现数据映射到高维?

看一个例子:

这就从二维变成了三维,当然还可以更高维:

这里可以粗略理解成:多项式可以实现数据的维度扩增,而高斯核是指数形式,展开就是无穷多的多项式,所以高斯核可以将数据映射到无穷维度。

4.常用核函数

多项式核:

高斯核:

参考:

  • 李航《统计学习方法》

统计学习方法:核函数(Kernel function)的更多相关文章

  1. 核函数(kernel function)

    百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高 ...

  2. [转]核函数K(kernel function)

    1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n ...

  3. 统计学习方法c++实现之六 支持向量机(SVM)及SMO算法

    前言 支持向量机(SVM)是一种很重要的机器学习分类算法,本身是一种线性分类算法,但是由于加入了核技巧,使得SVM也可以进行非线性数据的分类:SVM本来是一种二分类分类器,但是可以扩展到多分类,本篇不 ...

  4. 统计学习方法:KNN

    作者:桂. 时间:2017-04-19  21:20:09 链接:http://www.cnblogs.com/xingshansi/p/6736385.html 声明:欢迎被转载,不过记得注明出处哦 ...

  5. 李航《统计学习方法》CH01

    CH01 统计学方法概论 前言 章节目录 统计学习 监督学习 基本概念 问题的形式化 统计学习三要素 模型 策略 算法 模型评估与模型选择 训练误差与测试误差 过拟合与模型选择 正则化与交叉验证 正则 ...

  6. 统计学习方法:支撑向量机(SVM)

    作者:桂. 时间:2017-05-13  21:52:14 链接:http://www.cnblogs.com/xingshansi/p/6850684.html 前言 主要记录SVM的相关知识,参考 ...

  7. 统计学习方法—SVM推导

    目录 SVM 1. 定义 1.1 函数间隔和几何间隔 1.2 间隔最大化 2. 线性可分SVM 2.1 对偶问题 2.2 序列最小最优算法(SMO) 3. 线性不可分SVM 3.1 松弛变量 3.2 ...

  8. 【NLP】基于统计学习方法角度谈谈CRF(四)

    基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  9. 统计学习方法 --- 感知机模型原理及c++实现

    参考博客 Liam Q博客 和李航的<统计学习方法> 感知机学习旨在求出将训练数据集进行线性划分的分类超平面,为此,导入了基于误分类的损失函数,然后利用梯度下降法对损失函数进行极小化,从而 ...

随机推荐

  1. java中的递归

    所谓递归,是指程序调用自身,当然,递归不会无休止地调用下去,它必然有一个出口,当满足条件时程序也就结束了,不然的话,那就是死循环了. 看下面这个类,有几个递归方法,看了之后肯定会对你学习递归很有帮助的 ...

  2. JavaScript零基础入门

    为什么学习JavaScript 1. 所有主流浏览器都支持JavaScript. 2. 目前,全世界大部分网页都使用JavaScript. 3. 它可以让网页呈现各种动态效果. 易学性 1.学习环境无 ...

  3. JS实现购物车特效

    学习通过JavaScript实现类似于淘宝的购物车效果,包括商品的单选.全选.删除.修改数量.价格计算.数目计算.预览等功能. 1. 实现兼容低版本IE的getElementsByClassName( ...

  4. SQLSERVER 切换数据库为单用户和多用户模式

    有时候数据库在占用时,想做一些操作,无法操作.可以尝试将数据库切换为单用户模式来操作.操作完之后再切换回多用户模式. 命令如下: alter database 数据库名 set Single_user ...

  5. java学习笔记----运算符

    一.算数运算符 特别说明: 加 ,减 ,乘 ,除 与数学运算一致 取余符号看被除数 自加(减)运算:++a,--a;先做自加(自减)运算在做其他运算 a++,a--;先做其他运算在做自加(自减)运算 ...

  6. iOS开发之CALayer

    1.         概述 在iOS中,你能看得见摸得着的东西基本上都是UIView,比如一个按钮.一个文本标签.一个文本输入框.一个图标等等,这些都是UIView,其实UIView之所以能显示在屏幕 ...

  7. letter-spacing+first-letter实现按钮文字隐藏

    本文地址:http://www.zhangxinxu.com/wordpress/?p=3557 一.文不在长,有货则灵 图片式按钮的文字隐藏看来是大家都比较关注的一个问题(分享讨论.微博转发等可见一 ...

  8. windows 安装Beautiful Soup(转)

    Beautiful Soup是一个Python的一个库,主要为一些短周期项目比如屏幕抓取而设计.有三个特性使得它非常强大: 1.Beautiful Soup提供了一些简单的方法和Python术语,用于 ...

  9. 前端MVC框架之 Angular

    一.什么是Angular jQuery,它属于一种类库(一系列函数的集合),以DOM为驱动核心:而Angular是一种 MVC 的前端框架,则是前端框架,以数据和逻辑为驱动核心,它有着诸多特性,最重要 ...

  10. Confluence安装&破解&汉化

    p.MsoNormal,li.MsoNormal,div.MsoNormal { margin: 0cm; margin-bottom: .0001pt; text-align: justify; f ...